首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A reduced growth model based on stand basal area. A case for hybrid poplar plantations in northeast Spain
Authors:Francisco Rodríguez  Jesús Pemán  Álvaro Aunós
Institution:1. Cesefor Foundation, Pol. Ind. Las Casas, calle C, Parcela 4, 42005 Soria, Spain;2. Dpt. of Crop and Forest Science, University of Lleida, Lleida, Spain
Abstract:Whole-stand models normally require data on initial stand basal area and dominant height. Dominant height measurements are time-consuming and often imprecise, compromising subsequent predictions. Poplar plantations provide a special case where basal area correlates with site index; a whole-stand model could thus be based on stand basal area. We report a static model constructed by the generalized algebraic difference approach (GADA) for poplar plantations for three different hybrid poplars (Populus × euramericana (Dode) Guinier “I-214”, “MC”, and “Luisa Avanzo”) in northeast Spain. The transition function was based on current stand basal area and was fitted with data from 158 permanent plots ranging from 1- to 17-year-old plantations. Merchantable stand volume was estimated by a volume equation where height was predicted by a height–basal area relationship based on 458 temporary plots. The model differences between clones were compared using the nonlinear extra sum of squares method. Significant differences were detected, while Luisa Avanzo presented the highest merchantable volume at the end of the rotation. Errors in basal area predictions were below 20% within 6 years in the case of Luisa Avanzo and MC clones, and within 3 years in the case of I-214. Our research showed that satisfactory predictions can be obtained using GADA with a single transition function based on an easily measurable variable such as stand basal area.
Keywords:Poplar plantations  Generalized algebraic difference approach  Growth model  Merchantable stand volume  Stand basal area
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号