首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments
Institution:1. Norwegian Geotechnical Institute (NGI), Oslo, Norway;2. Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life sciences (NMBU), Ås, Norway;3. Nepal Agroforestry Foundation (NAF), Kathmandu, Nepal;4. University of Florida, Department of Geological Sciences, Gainesville, FL, USA;5. Kathmandu Forestry College (KAFCOL), Kathmandu, Nepal
Abstract:Biochar holds promise as an amendment for soil quality improvement and sequestration of atmospheric carbon dioxide. However, knowledge of how biochar influences soil properties, especially soil microorganisms, is limited. Three separate studies were conducted, with two studies using Plantago lanceolata as the AMF hosting plant, and a third being conducted in the field. Each of the three studies employed a different soil type. Furthermore, a total of five different biochars, and ten different biochar application rates, were used across the three experiments. All experiments had the goal to examine biochar influences on arbuscular mycorrhizal fungal (AMF) abundance in roots and AMF abundance (hyphal lengths) in soils. AMF abundance was either decreased or remained unchanged across all biochar treatments. When AMF abundances decreased, significant changes in soil properties, primarily in soil P availability, were observed. Application of large quantities (2.0% and 4.0%, w/w) of a lodgepole pine biochar, led to significant declines in AMF abundance in roots of 58% and 73% respectively, but not in soils. These declines in AMF abundance were accompanied by significant declines (28% and 34%) in soil P availability. After addition of a peanut shell biochar produced at 360 °C, P increased by 101% while AMF root colonization and extraradical hyphal lengths deceased by 74% and 95% respectively. Field application of mango wood biochar at rates of 23.2 and 116.1 t C ha?1 increased P availabilities by 163% and 208% respectively and decreased AMF abundances in soils by 43% and 77%. These findings may have implications for soil management where the goal is to increase the services provided by AMF.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号