首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Species Dynamics in Disturbed Landscapes: When does a Shifting Habitat Mosaic Enhance Connectivity?
Authors:Michael C Wimberly
Institution:(1) Warnell School of Forest Resources, University of Georgia, Athens, GA 30602, USA
Abstract:Although landscape ecology emphasizes the effects of spatial pattern on ecological processes, most neutral models of species–habitat relationships have treated habitat as a static constraint. Do the working hypotheses derived from these models extend to real landscapes where disturbances create a shifting mosaic? A spatial landscape simulator incorporating vegetation dynamics and a metapopulation model was used to compare species in static and dynamic landscapes with identical habitat amounts and spatial patterns. The main drivers of vegetation dynamics were stand-replacing disturbances, followed by gradual change from early-successional to old-growth habitats. Species dynamics were based on a simple occupancy model, with dispersal simulated as a random walk. As the proportion of available habitat (p) decreased from 1.0, species occupancy generally declined more rapidly and reached extinction at higher habitat levels in dynamic than in static landscapes. However, habitat occupancy was sometimes actually higher in dynamic landscapes than in static landscapes with similar habitat amounts and patterns. This effect was most pronounced at intermediate amounts of habitat (p = 0.3?0.6) for mobile species that had high colonization rates, but were unable to cross non-habitat patches. Differences between static and dynamic landscapes were contingent upon the initial metapopulation size and the shapes of disturbances and the resulting habitat patterns. Overall, the results demonstrate that dispersal-limited species exhibit more pronounced critical behavior in dynamic landscapes than is predicted by simple neutral models based on static landscapes. Thus, caution should be exercised in extending generalizations derived from static landscape models to disturbance-driven landscape mosaics.
Keywords:Connectivity  Critical behavior  Disturbance  Extinction  Fragmentation  Patch dynamics  Percolation  Threshold
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号