首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron
Authors:A Hernández-Cruz  F Sala  P R Adams
Institution:Howard Hughes Medical Institute, Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794.
Abstract:Confocal laser-scanned microscopy and long-wavelength calcium (Ca2+) indicators were combined to monitor both sustained and rapidly dissipating Ca2+ gradients in voltage-clamped sympathetic neurons isolated from the bullfrog. After a brief activation of voltage-dependent Ca2+ channels, Ca2+ spreads inwardly, and reaches the center of these spherical cells in about 300 milliseconds. Although the Ca2+ redistribution in the bulk of the cytosol could be accounted for with a radial diffusion model, local nonlinearities, suggesting either nonuniform Ca2+ entry or spatial buffering, could be seen. After electrical stimulation, Ca2+ signals in the nucleus were consistently larger and decayed more slowly than those in the cytosol. A similar behavior was observed when release of intracellular Ca2+ was induced by caffeine, suggesting that in both cases large responses originate from Ca2+ release sites near or within the nucleus. These results are consistent with an amplification mechanism involving Ca2(+)-induced Ca2+ release, which could be relevant to activity-dependent, Ca2(+)-regulated nuclear events.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号