首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Contrasting grain crop and grassland management effects on soil quality properties for a north-central Missouri claypan soil landscape
Abstract:Abstract

Crop management has the potential to either enhance or degrade soil quality, which in turn impacts on crop production and the environment. Few studies have investigated how crop management affects soil quality over different landscape positions. The objective of the present study was to investigate how 12 years of annual cropping system (ACS) and conservation reserve program (CRP) practices impacted soil quality indicators at summit, backslope and footslope landscape positions of a claypan soil in north-central Missouri. Claypan soils are particularly poorly drained because of a restrictive high-clay subsoil layer and are vulnerable to high water erosion. Three replicates of four management systems were established in 1991 in a randomized complete block design, with landscape position as a split-block treatment. The management systems were investigated: (1) annual cropping system 1 (ACS1) was a mulch tillage (typically ≥ 30% of soil covered with residue after tillage operations) corn (Zea mays L.)–soybean (Glycine max (L.) Merr.) rotation system, (2) annual cropping system 2 (ACS2) was a no-till corn–soybean rotation system, (3) annual cropping system 3 (ACS3) was a no-till corn–soybean–wheat (Triticum aestivum L.) rotation system, with a cover crop following wheat, (4) CRP was a continuous cool-season grass and legume system. In 2002, soil cores (at depths of 0–7.5, 7.5–15 and 15–30 cm) were collected by landscape position and analyzed for physical, chemical and biological soil quality properties. No interactions were observed between landscape and crop management. Relative to management effects, soil organic carbon (SOC) significantly increased with 12 years of CRP management, but not with the other management systems. At the 0–7.5-cm soil depth in the CRP system, SOC increased over this period by 33% and soil total nitrogen storage increased by 34%. Soil aggregate stability was approximately 40% higher in the no-till management systems (ACS2 and ACS3) than in the tilled system (ACS1). Soil aggregation under CRP management was more than double that of the three grain-cropping systems. Soil bulk density at the shallow sampling depth was greater in ACS3 than in ACS1 and ACS2. In contrast to studies on other soil types, these results indicate only minor changes to claypan soil quality after 12 years of no-till management. The landscape had minor effects on the soil properties. Of note, SOC was significantly lower in the 7.5–15-cm soil depth at the footslope compared with the other landscape positions. We attribute this to wetter and more humid conditions at this position and extended periods of high microbial activity and SOC mineralization. We conclude that claypan soils degraded by historical cropping practices will benefit most from the adoption of CRP or CRP-like management.
Keywords:claypan soils  conservation reserve program  cropping system  landscape  soil quality
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号