首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantitative trait locus mapping for seed artificial aging traits using an F2:3 population and a recombinant inbred line population crossed from two highly related maize inbreds
Authors:Yanan Liu  Hongwei Zhang  Xuhui Li  Feng Wang  Demar Lyle  Lianjun Sun  Guoying Wang  Jianhua Wang  Li Li  Riliang Gu
Abstract:Quantitative trait locus (QTL) mapping for seed longevity is essential for breeding modern cultivars with resistance to deterioration during postharvest storage. The inbred lines X178 and I178 showed large differences in seed vigour after artificial aging treatment, while they had similar performances in terms of most agronomic traits. An F2:3 population and a recombinant inbred line (RIL) population were generated to map QTL after 5 days under artificial aging conditions. Positive correlations were observed among all investigated traits including the aging germination rate, relative aging germination rate, aging simple vigour index, aging primary root length, aging shoot length and aging total length. Thirteen QTL were identified to locate on five chromosome regions: Chr.1:297 Mb (chromosome 1 region 297 Mb), Chr.3:205 Mb, Chr.4:240 Mb, Chr.5:205 Mb and Chr.7:155 Mb, with 2 to 4 QTL co‐located on a region. In each region, 3–8 previously identified aging‐related QTL were located, confirming the importance of these regions for controlling seed longevity in different maize populations. Taken together, the results of this work provide a foundation for further QTL fine mapping and the molecular‐assisted breeding of aging tolerant maize.
Keywords:artificial aging  longevity  maize  quantitative trait locus  seed vigour
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号