首页 | 本学科首页   官方微博 | 高级检索  
     检索      

中国野生大豆群体农艺加工性状与SSR关联分析和特异材料的遗传构成
引用本文:范虎,文自翔,王春娥,王芳,邢光南,赵团结,盖钧镒.中国野生大豆群体农艺加工性状与SSR关联分析和特异材料的遗传构成[J].作物学报,2013,39(5):775-788.
作者姓名:范虎  文自翔  王春娥  王芳  邢光南  赵团结  盖钧镒
作者单位:南京农业大学大豆研究所 / 农业部大豆生物学与遗传育种重点实验室 / 国家大豆改良中心 / 作物遗传与种质创新国家重点实验室,江苏南京 210095
基金项目:国家重点基础研究发展计划(973计划)项目,国家自然科学基金资助项目,教育部高等学校创新引智计划项目,江苏省优势学科建设工程专项和国家重点实验室自主课题资助
摘    要:选用204对SSR标记对全国野生大豆群体(174份代表性样本)的基因组扫描,采用TASSEL软件的GLM (general linear model)方法对百粒重、开花期、成熟期、干豆腐得率、干豆乳得率和耐淹性性状值关联分析,解析与性状关联位点的优异等位变异,鉴别出一批与农艺、加工性状关联的优异等位变异及携带优异等位变异的载体材料;进一步分析极值表型材料的遗传构成。结果表明: (1)累计51个位点(次)与性状关联,有些标记同时与2个或多个性状相关联,可能是性状相关的遗传基础;关联位点中累计16位点(次)与连锁分析定位的QTL一致;(2)与地方品种群体和育成品种群体的关联位点比较,发现野生群体关联位点只有少数与之相同,群体间育种性状的遗传结构有明显差异。(3)与多性状关联的位点其等位变异对不同性状的效应方向可相同可不同,如GMES5532a-A332对百粒重和耐淹性的相对死苗率都是增效效应,而GMES5532a-A344对百粒重是减效效应,对相对死苗率是增效效应;(4)极值表型材料间的遗传构成有很大差异。表型值大的材料携带较多增效效应大的位点等位变异,例如N23349的百粒重是9.08 g,含有4个增效效应较大的位点等位变异;表型值小的材料携带较多减效效应大的位点等位变异,如N23387的百粒重是0.75 g,含有4个减效效应较大的位点等位变异。关联作图得到的信息可以弥补连锁定位信息的不足,尤其是全基因组位点上复等位变异的信息为育种提供了亲本选配和后代等位条带辅助选择的依据。

关 键 词:野生大豆(Glycine  soja  Sieb.  et  Zucc.)  SSR  关联分析  优异等位变异  
收稿时间:2012-06-12

Association Analysis between Agronomic-Processing Traits and SSR Markers and Genetic Dissection of Specific Accessions in Chinese Wild Soybean Population
FAN Hu,WEN Zi-Xiang,WANG Chun-E,WANG Fang,XING Guang-Nan,ZHAO Tuan-Jie,GAI Jun-Yi.Association Analysis between Agronomic-Processing Traits and SSR Markers and Genetic Dissection of Specific Accessions in Chinese Wild Soybean Population[J].Acta Agronomica Sinica,2013,39(5):775-788.
Authors:FAN Hu  WEN Zi-Xiang  WANG Chun-E  WANG Fang  XING Guang-Nan  ZHAO Tuan-Jie  GAI Jun-Yi
Institution:Soybean Research Institute of Nanjing Agricultural University / Key Laboratory for Soybean Biology, Genetics and Breeding, Ministry of Agriculture / National Center for Soybean Improvement / National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, China
Abstract:Association analysis is potential in genetic dissection of germplasm accessions and breeding materials for designing crosses and improving selection efficiencies. The present study was aimed at finding elite QTLs/alleles as well as their carriers through genetic dissection of agronomic-processing traits in Chinese annual wild soybean (Glycine soja Sieb. et Zucc.) population for improvement and broadening the genetic background of modern soybean cultivars.The genotypic data of 204 simple-sequence repeat (SSR) markers on 174 wild accessions sampled from and evenly distributed in all the wild soybean eco-regions in China were used and analyzed for association with six agronomic and processing traits under TASSEL GLM (general linear model) program based on the population structure analysis. The QTLs significantly associated with the traits were analyzed further for their allele effects. The results showed: (1) Fifty-one SSR loci (times) associated with the six agronomic-processing traits were identified in the wild population. There were a few markers/loci associated with two or more traits simultaneously, which might be the genetic bases of correlation among the traits. Sixteen of fifty-one associated loci (times) were in agreement with mapped QTLs from linkage mapping procedure. (2)There existed only a few association loci in wild population coincided with those in landrace and released cultivar populations, indicating the difference of genetic structure among the three kinds of populations. (3) A set of elite alleles of detected loci and their carrier materials were screened out. Alleles for loci associated with several traits had different phenotypic effects in different traits, e.g. GMES5532a-A332 had positive phenotypic effect for both 100-seed weight and seedling death rate under submergence, while GMES5532a-A344 had negative effect on 100-seed weight but positive effect on seedling death rate under submergence. (4)There showed great difference of the genetic structure among the tested materials with extreme phenotypic value. The extreme accessions possessed the alleles with bigger effects, such as N23349 containing four alleles with bigger positive effects having its 100-seed weight as high as 9.08 g, while N23387 containing four alleles with bigger negative effects having its 100-seed weight only 0.75 g. The above results implied that association mapping could offer further genetic information complementary to linkage mapping, especially the information of multiple alleles of QTL on whole genome could be used in cross design for pyramiding elite alleles and marker-assisted selection in breeding for soybean.
Keywords:Wild soybean (Glycine soja Sieb  et Zucc  )  Simple-sequence repeat (SSR)  Association analysis  Elite allele
本文献已被 万方数据 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号