首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Malus pumila) leaves
Authors:M Bertamini  M S Grando  K Muthuchelian  N Nedunchezhian  
Institution:a Istituto Agrario di San Michele all' Adige, 38010 San Michele all', Adige, Italy;b School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625 021, India
Abstract:We have studied the effect of the apple proliferation phytoplasmal infection on some features of the thylakoids from field grown apple (Malus pumila) leaves. Changes in photosynthetic pigments, soluble proteins, ribulose-1,5-bisphosphate carboxylase, nitrate reductase, photosynthetic activities and thylakoid membrane proteins were investigated. The level of total chlorophyll and carotenoids were reduced in phytoplasma-infected leaves. Similar results were also observed for soluble proteins and ribulose- 1,5-bisphosphate carboxylase activity. The in vivo nitrate reductase activity was significantly reduced in infected leaves. When various photosynthetic activities were followed in isolated thylakoids, phytoplasmal infection caused marked inhibition of whole chain and photosystem II activity while the inhibition of photosystem I activity was only marginal. The artificial exogenous electron donors, diphenyl carbazide and hydroxylamine significantly restored the loss of photosystem II activity in infected leaves. The same results were obtained when Fv/Fm was evaluated by chlorophyll fluorescence measurements. The marked loss of photosystem II activity in infected leaves could be due to the loss of 47, 33, 28–25, 23 and 17 kDa polypeptides. It is concluded that phytoplasmal infection inactivates the donor side of photosystem II. This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the water-splitting complex was diminished significantly in infected leaves.
Keywords:donor side  electron transport  fluorescence  nitrate reductase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号