首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Growth, herbivore distribution, and herbivore damage of timber trees in a tropical silvopastoral reforestation system
Authors:Judith Riedel  Silvia Dorn  Mirco Plath  Karsten Mody
Institution:1. Institute of Agricultural Sciences, Applied Entomology, ETH Zurich, Schmelzbergstrasse 9/LFO, 8092, Zurich, Switzerland
2. Ecological Networks, Biology, Technische Universit?t Darmstadt, Schnittspahnstr. 3, 64287, Darmstadt, Germany
Abstract:

Context

The reforestation of degraded tropical pastures requires innovative tree planting systems that consider land user needs.

Aim

We established a silvopastoral reforestation system and assessed the effects of companion trees on the native timber tree Tabebuia rosea in Panama. Timber tree individuals were established in (1) solitary plantings (TSol) or in companion plantings with (2) Guazuma ulmifolia (TGua) or (3) the nitrogen-fixing Gliricidia sepium (TGli).

Methods

We quantified growth characteristics and herbivory of T. rosea, and analyzed leaf chemistry (including the stable isotopes ??15N and ??13C) and structure (leaf mass per area).

Results

Companion trees significantly affected stem diameter growth of T. rosea. Stem diameter growth was as high in TGli trees as in TSol trees but was reduced in TGua trees. Furthermore, TGua trees had higher leaf water content, and lower ??13C and lower leaf mass-to-area ratio than TGli trees, suggesting there were effects of shading by G. ulmifolia on T. rosea. Herbivory was high but not affected by planting regimes. Leafing phenology did not differ between planting regimes and G. sepium did not increase nitrogen content in T. rosea leaves.

Conclusion

Companion tree planting can support timber tree growth in silvopastoral reforestations, but adequate species selection is crucial for successful implementation of this planting system. Tree?Ctree interactions seem to be more relevant for timber tree growth than herbivory in the studied system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号