首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preparation,Characterization and Properties of High-salt-tolerance Sodium Alginate/Krill Protein Composite Fibers
Authors:Rui Zhang  Jing Guo  Jing Wu  Miao Zhao  Yuanfa Liu  Yue Yu
Institution:1.School of Textile and Material Engineering,Dalian Polytechnic University,Dalian,P. R. China;2.Liaoning Engineering Technology Research Center of Function Fiber and Its Composites,Dalian,P. R. China
Abstract:Sodium alginate (SA) and krill protein (AKP) were blended to obtain composite solution, and functional SA/AKP composite fibers were prepared via wet spinning. To further improve the salt tolerance, SA/AKP composite fibers were modified with copper sulfate aqueous solution as secondary coagulation bath because of the strong adsorption to copper ions. The CSA/AKP composite fibers with high salt tolerance have been successfully prepared. The intermolecular interaction of SA/AKP composite system and the two-order structure of protein in the composite system were characterized by Fourier transform infrared spectroscopy (FT-IR). Besides, the crystallinity, morphology, mechanical properties, salt tolerance and water resistance and thermal stability of SA/AKP composites were investigated respectively. The results showed that the adsorption rate and the adsorption capacity of the composite solution to copper ion were significantly higher than those to calcium ion. Under the effect of secondary solidification by copper sulfate, the β-sheet chain of the composite fibers increased from 41.48 % to 49.21 %, the intramolecular hydrogen bond increased from 38.18 % to 44.26 %, the intermolecular hydrogen bond decreased from 59.84 % to 54.70 % and free hydroxyl slightly decreased. The water resistance of the modified composite fibers was improved by about 22 %; when the swelling time was 25 min, the salt resistance increased by about 150 %; the number of grooves on the surface of the composite fibers obviously increased, and the grooves on the surface of CSA/AKP composite fibers and the fiber section structure were much denser; Meanwhile, copper sulfate had some influence on the crystallization, thermal stability and mechanical properties of the composite fibers.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号