首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling salt accumulation by a bean crop grown in a closed hydroponic system in relation to water uptake
Authors:D Savvas  N Mantzos  PE Barouchas  IL Tsirogiannis  C Olympios  HC Passam
Institution:1. Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;2. Department of Floriculture and Landscape Architecture, Faculty of Agricultural Technology, T.E.I. of Epirus, P.O. Box 110, Arta 47100, Greece
Abstract:Four different NaCl concentrations in the irrigation water, 0.8, 3, 6 and 9 mol m−3, were applied as experimental treatments to beans (Phaseolus vulgaris L.) grown in completely closed hydroponic systems in a greenhouse. Initially, the Na and Cl concentrations increased rapidly in the root zone, as indicated by the values measured in the drainage water, and this resulted in corresponding increases in the Na/water and Cl/water uptake ratios. However, as these ratios approached equilibrium with the NaCl/water ratios in the irrigation water, the Na and Cl concentrations in the root zone converged to maximal levels, which depended on the treatment. The highest Na and Cl concentrations in the root zone and the corresponding NaCl concentrations in each treatment were used to establish relationships between the external NaCl concentration and the Na/water or Cl/water uptake ratios, which proved to be exponential for Na but linear for Cl. These relationships were then used in a previously established model Savvas, D., Kotsiras, A., Meletiou, G., Margariti, S., Tsirogiannis, I., 2005a. Modeling the relationship between water uptake by cucumber and NaCl accumulation in a closed hydroponic system. HortScience 40, 802–807] to enable the prediction of the Na and Cl concentrations in the root zone in relation to the cumulative water uptake. The curves predicted by the model followed a convex pattern, with an initially rapid increase in Na and Cl concentrations in the root zone followed by a gradual levelling out as the cumulative water consumption rose. The measured Na and Cl concentrations in the drainage water were more accurately predicted at the higher NaCl concentrations in the irrigation water, although those predicted at 0.8 mol m−3 of NaCl were considered acceptable for use in commercial practice. Bean showed a high efficiency of Na exclusion from the upper leaves, while Cl was readily translocated to the young leaves as the external Cl concentration rose. Plant growth decreased with increasing salinity in a way similar to that reported for beans constantly exposed to comparable salinity levels.
Keywords:Phaseolus vulgaris  Nutrient modelling  Salinity  Salt stress  Soilless culture
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号