首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The ND EarlyQPM program: developing the next generation of healthier maize (<Emphasis Type="Italic">Zea mays</Emphasis> L.) products
Authors:M J Carena  N Dong
Institution:1.Department of Plant Sciences,North Dakota State University,Fargo,USA
Abstract:There is a need to develop the next generation of healthier crop products for an improved human and animal nutrition. Maize (Zea mays L.) cultivars with improved amino acid profiles are essential to diets focused on this crop. Breeders have added crop value with the development of quality protein maize (QPM). However, QPM cultivars have never been an option to farmer and ranchers in short-season environments. The objectives of this research were: (1) to adapt QPM genotypes to the northern U.S. through the North Dakota (ND) EarlyQPM Program, and (2) to develop new early generation SS and non-SS short-season QPM lines and populations for breeding purposes. Fifty-three inbred lines, including 47 QPM donor lines, five experimental North Dakota State University (NDSU) lines, and one ex-PVP line from industry, were selected to produce 94 early-QPM backcross populations. Considering earliness, protein content, and amino acid levels, 218 early generation lines were selected for producing testcrosses with industry testers. Experiments evaluating testcrosses were arranged in 10 × 10 and 12 × 12 partially balanced lattice designs across three ND locations in 2013 and 2014. A total of 48 lines were selected for further development, 17 representing the Stiff Stalk (SS) heterotic group and 31 representing the non-SS group. Selected lines showed, in hybrid combinations, not only above average grain yield, rate of dry down, and total protein content but also high levels of lysine, tryptophan, and methionine essential amino acids for feedstock nutrition. The results of this research show, for the first time, the successful adaptation of QPM genotypes to short-season environments. As a result, new ND EarlyQPM germplasms and lines have been developed for potential release.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号