首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determining resistance to <Emphasis Type="Italic">Fusarium verticillioides</Emphasis> and fumonisin accumulation in African maize inbred lines resistant to <Emphasis Type="Italic">Aspergillus flavus</Emphasis> and aflatoxins
Authors:Lindy Joy Rose  Sheila Okoth  Ilze Beukes  Abigael Ouko  Marili Mouton  Bradley Charles Flett  Dan Makumbi  Altus Viljoen
Institution:1.Department of Plant Pathology,Stellenbosch University,Matieland,South Africa;2.School of Biological Sciences,University of Nairobi,Nairobi,Kenya;3.Agricultural Research Council – Grain Crops Institute,Potchefstroom,South Africa;4.International Maize and Wheat Improvement Center (CIMMYT),Nairobi,Kenya
Abstract:Fusarium verticillioides and Aspergillus flavus cause Fusarium ear rot (FER) and Aspergillus ear rot (AER) of maize, respectively. Both pathogens are of concern to producers as they reduce grain yield and affect quality. F. verticillioides and A. flavus also contaminate maize grain with the mycotoxins fumonisins and aflatoxins, respectively, which has been associated with mycotoxicosis in humans and animals. The occurrence of common resistance mechanisms to FER and AER has been reported. Hence, ten Kenyan inbred lines resistant to AER and aflatoxin accumulation were evaluated for resistance to FER, F. verticillioides colonisation and fumonisin accumulation; and compared to nine South African lines resistant to FER and fumonisin accumulation. Field trials were conducted at three localities in South Africa and two localities in Kenya. FER severity was determined by visual assessment, while F. verticillioides colonisation and fumonisin content were quantified by real-time PCR and liquid chromatography tandem mass spectrometry, respectively. Significant genotype x environment interactions was determined at each location (P ≤ 0.05). Kenyan inbred CML495 was most resistant to FER and F. verticillioides colonisation, and accumulated the lowest concentration of fumonisins across localities. It was, however, not significantly more resistant than Kenyan lines CML264 and CKL05015, and the South African line RO549 W, which also exhibited low FER severity (≤5%), fungal target DNA (≤0.025 ng μL?1) and fumonisin levels (≤2.5 mg kg?1). Inbred lines resistant to AER and aflatoxin accumulation appear to be promising sources of resistance to F. verticillioides and fumonisin contamination.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号