首页 | 本学科首页   官方微博 | 高级检索  
     检索      


SSR-based genetic linkage analysis of resistance to crown rust (Puccinia coronata f. sp. lolii) in perennial ryegrass (Lolium perenne)
Authors:J L Dumsday  K F Smith  J W Forster †  E S Jones ‡
Institution:Plant Biotechnology Centre, Agriculture Victoria, Department of Primary Industries, La Trobe University, Bundoora, Victoria 3086;;Pastoral and Veterinary Institute, Agriculture Victoria, Department of Natural Resources and Environment, Private Bag 105, Hamilton, Victoria 3300;;Cooperative Research Centre for Molecular Plant Breeding, Australia
Abstract:Crown rust (caused by Puccinia coronata f. sp. lolii) is a serious foliar disease of the pasture and turfgrass perennial ryegrass (Lolium perenne). Previous genetic studies have detected both qualitative and quantitative resistance mechanisms, and interpretation of the genetic system is complicated by variation within the sexually reproducing pathogen. Resistant and susceptible parental genotypes of ryegrass were identified using a composite urediniospore population collected from three geographically distinct locations. A two-way pseudo-testcross mapping population was obtained as the F1 progeny of the pair-cross between ryegrass parental genotypes Vedette6 and Victorian9. Both parents showed intermediate resistance against a pathogen population collected in a single geographical zone (Hamilton, Victoria), but in the F1 population, significant variation for a range of resistance-associated characters was detected. Statistical analysis of phenotypic data suggested a major gene effect, hence bulked segregant analysis with map-assigned simple sequence repeat (SSR) markers was used to scan the genome. A marker showing strong association with resistance was assigned to linkage group (LG) 2 of perennial ryegrass. Analysis of 11 LG2 SSR markers defined an interval between loci xlpssrh03f03 and xlpssrk02e02 as containing the gene or genes (LpPc1) conferring crown rust resistance. Resistance gene determinants were inherited from both parents, with up to 80% of the total phenotypic variation explained by markers segregating from Vedette6 and up to 26% of the variation explained by markers segregating from Victorian9. The two contributions together resulted in an additive increase in effect, with fully resistant individuals requiring determinants from both parents. A conserved syntenic relationship was observed with linkage group B of Avena strigosa, which is the location of a cluster of resistance genes to the oat form of crown rust. The implications of this study for marker-assisted selection of disease resistance in perennial ryegrass are discussed.
Keywords:comparative genetics  crown rust  genetic map  perennial ryegrass  resistance gene  simple sequence repeat
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号