首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Errors of kinematic-wave and diffusion-wave approximations for time-independent flows in infiltrating channels
Authors:V P Singh  V Aravamuthan  E S Joseph
Institution:(1) Department of Civil and Environmental Engineering, Louisiana State University, 70803-6405 Baton Rouge, LA, USA;(2) Department of Civil Engineering, Southern University, 70813 Baton Rouge, LA, USA
Abstract:Time-independent (or steady-state) cases of channel flow were treated and errors of the kinematic-wave and diffusion-wave approximations derived for finite flow at the upstream end. The diffusion-wave approximation was found to be in excellent agreement with the dynamic wave representation, with error magnitudes of 0.2% for values of KF 0 2 ge7.5, where K is the kinematic-wave number and f 0 is the Froude number. Even for small values of KF 0 2 (e.g., KF 0 2 =0.75), the errors were typically in the range of 1.3 to 3.7%. The approximate analytical diffusion-wave solution performed poorly with error magnitudes greater than 30% even for large values of KF 0 2 . The kinematic-wave approximation was also found to be in good agreement with the dynamic-wave representation with errors of about 1.2% for KF 0 2 =7.5 and varying from 15 to 44% for KF 0 2 =0.75.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号