首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Responses of plant diversity and primary productivity to nutrient addition in a Stipa baicalensis grassland,China
Authors:YU Li  SONG Xiao-long  ZHAO Jian-ning  WANG Hui  BAI Long  YANG Dian-lin
Institution:1、Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, P.R.China 2、College of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R.China 3、Key Laboratory of Original Agro-Environment Quality, Ministry of Agriculture, Tianjin 300191, P.R.China
Abstract:Nutrient addition can affect the structure and diversity of grassland plant communities, thus alter the grassland productivity. Studies on grassland plant community composition, structure and diversity in response to nutrient addition have an important theoretical and practical significance for the scientific management of grassland, protection of plant diversity and the recovery of degraded grassland. A randomized block design experiment was conducted with six blocks of eight treatments each: control (no nutrient addition) and K, P, N, PK, NK, NP, and NPK addition. We evaluated plant composition, height, coverage, density, and aboveground biomass to estimate primary productivity and plant diversity. Results showed that all treatments increased primary productivity significantly (P<0.05) with the exception of the K and the NPK treatments had the greatest effect, increasing aboveground biomass 2.46 times compared with the control (P<0.05). One-way ANOVA and factorial analysis were used for the species richness, Shannon-Wiener index, Pielou index and aboveground biomass, and the relationships between the diversity indices and aboveground biomass were determined through linear regression. We found that fertilization altered the community structure; N (but not P or K) addition increased the proportion of perennial rhizome grasses and significantly reduced that of perennial forbs (P<0.05), thus it presented a trend of decrease in species richness, Shannon-Wiener and Pielou indexex, respectively. Only the main effects of N had significant impacts on both the diversity indices and the aboveground biomass (P<0.05), and the interactions between N-P, N-K, P-K and N-P-K could be neglected. With fertilization, plant diversity (correlation coefficient, –0.61), species richness (–0.49), and species evenness (–0.51) were all negatively linearly correlated with primary productivity. The correlations were all significant (P<0.01). Scientific nutrient management is an effective way to improve grassland productivity, protect the plant diversity as well as recover the degraded grassland.
Keywords:aboveground biomass  nitrogen  phosphorus  plant diversity  potassium  temperate meadow steppe  
本文献已被 CNKI 等数据库收录!
点击此处可从《农业科学学报(英文版)》浏览原始摘要信息
点击此处可从《农业科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号