首页 | 本学科首页   官方微博 | 高级检索  
     检索      

大豆分子标记遗传图谱的整合及其应用
引用本文:周斌,邢邯,陈受宜,盖钧镒.大豆分子标记遗传图谱的整合及其应用[J].大豆科学,2009,28(4).
作者姓名:周斌  邢邯  陈受宜  盖钧镒
作者单位:1. 南京农业大学大豆研究所,国家大豆改良中心,作物遗传与种质创新国家重点实验室,江苏,南京,210095
2. 中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室,北京,100101
基金项目:国家重点基础研究发展规划资助项目,国家高新技术研究发展计划资助项目,教育部高等学校创新引智计划资助项目,农业部公益性行业专项资助项目 
摘    要:图谱整合是弥补单个作图群体因分子标记多态性的局限性而难以构建高密度图谱的有效方法.利用具明显农艺性状差异的大豆品种间杂交组合(科丰1号×南农1138-2、南农87-23×NG94-156、苏88-M21×新沂小黑豆和皖82-178×通山薄皮黄豆甲)所衍生的重组自交系群体分别构建了含有560,223,195,133个分子标记的遗传连锁图谱.以各图谱共有SSR标记作为锚定标记,使用JoinMap3.0进行图谱整合,得到一张包含20个连锁群,795个分子标记,总遗传距离2 772.9 cM,平均间距3.49 cM的整合图谱.各连锁群的标记个数在24~69之间,遗传距离在77.1~224.7 cM之间.与Song等的公共图谱比较,标记在连锁群上的分布和位置高度吻合,并增加了5个公共图谱上没有的SSR标记,另有6个SSR标记定位在不同的连锁群上.通过整合图谱可将关联分析所获基因/QTL定位到连锁群区间;便于不同群体定位结果间的比较;并找寻与之连锁更紧密的邻近标记.鉴于本图谱所用作图群体的亲本与国内育种常用材料的遗传来源相近,将更便于国内育种性状的QTL定位研究.

关 键 词:大豆遗传连锁图谱  整合图谱

An Integrated Genetic Linkage Map of Soybean and Its Application
ZHOU Bin,XING Han,CHEN Shou-yi,GAI Jun-yi.An Integrated Genetic Linkage Map of Soybean and Its Application[J].Soybean Science,2009,28(4).
Authors:ZHOU Bin  XING Han  CHEN Shou-yi  GAI Jun-yi
Institution:ZHOU Bin1,XING Han1,CHEN Shou-yi2,GAI Jun-yi1(1Soybean Research Institute of Nanjing Agricultural University,National Center for Soybean Improvement,State Key Laboratory of Crop Genetics , Germplasm Enhancement,Nanjing 210095,Jiangsu,2The State Key Laboratory of Plant Gemomics,Institute of Genetics , Developmental Biology,Chinese Academy of Sciences,Being 100101,China)
Abstract:Integration of genetic linkage maps into a joint one is an effective approach to overcome the limitation of number of markers due to the constraint of polymorphism in individual specific mapping populations. In the present study,four RIL populations, Kefeng 1 × Naraiong 1138-2,Nannong 87-23 ×NG94-156,Su 88-M21 × Xinyixiaoheidou and Wan 82-178 × Tongshanbopihuangdoujia derived from the crosses between distinct elite cultivars of Glycine max (L.) Merr. were used at first to construct individual genetic linkage maps with 560,223,195 and 133 markers, respectively, by using the software JoinMap 3.0. Then based on the common SSR markers across the four maps,the individual maps were integrated into an integrated genetic linkage map by using the same software, which containing 795 markers spanning 2 772. 9 cM of the soybean genome,distributed on 20 linkage groups with the length of linkage groups varied from 77. 1 cM to 224. 7 cM,the marker number from 24 to 69, and an average marker distance of 3. 49 cM. Among the linkage groups, C2, Cl, N and F are obviously highly enhanced. In comparison with Song et al' s integrated map, the present map shows a good coincidence with it except with six SSR markers located on different linkage groups and five new SSR markers added to the present map. The integrated map can be used in locating genes/QTLs detected in marker analysis and association mapping,in comparing mapping results from different populations, and in searching for closer markers. The present integrated map performed a reasonable result in comparison with the individual maps. Therefore, the present map is potential in QTL mapping study, especially for domestic soybean breeding purposes since the parental materials of the four RIL populations are closely related to the breeding materials in Chinese breeding programs.
Keywords:SSR
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号