首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Charge migration in DNA: ion-gated transport
Authors:Barnett R N  Cleveland C L  Joy A  Landman U  Schuster G B
Institution:School of Physics, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Abstract:Electron hole (radical cation) migration in DNA, where the quantum transport of an injected charge is gated in a correlated manner by the thermal motions of the hydrated counterions, is described here. Classical molecular dynamics simulations in conjunction with large-scale first-principles electronic structure calculations reveal that different counterion configurations lead to formation of states characterized by varying spatial distributions and degrees of charge localization. Stochastic dynamic fluctuations between such ionic configurations can induce correlated changes in the spatial distribution of the hole, with concomitant transport along the DNA double helix. Comparative ultraviolet light-induced cleavage experiments on native B DNA oligomers and on ones modified to contain counterion (Na(+))-starved bridges between damage-susceptible hole-trapping sites called GG steps show in the latter a reduction in damage at the distal step. This reduction indicates a reduced mobility of the hole across the modified bridge as predicted theoretically.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号