首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The development of a species‐specific test to detect Hymenoschyphus pseudoalbidus in ash tissues
Authors:F Gherghel  B Fussi  K Donges  M Haustein  K M Jakob  K Müller  B Pi?kur  T Hauptman  H D Lenz  M Konnert  G Kost  K‐H Rexer
Institution:1. Systematic Botany and Mycology, Philipps‐Universit?t Marburg, , 35032 Marburg, Germany;2. Bavarian Office for Forest Seeding and Planting (ASP), , Teisendorf, Germany;3. Department of Forest Protection, Slovenian Forestry Institute, , Ljubljana, Slovenia;4. Department of Forest Protection, Bavarian State Institute of Forestry (LWF), , Freising, Germany
Abstract:Ash dieback, caused by the pathogen Hymenoscyphus pseudoalbidus, is an emerging lethal disease of Fraxinus excelsior in large parts of Europe. To develop a method for the early detection of Hpseudoalbidus, we designed primers for 46 microsatellites (simple sequence repeats, SSRs) of the pathogen. Seven pairs of primers (SSR38, SSR58, SSR114, SSR198, SSR206, SSR211 and SSR212) were found to bind only to the genome of H. pseudoalbidus, but not to the genome of H. albidus or to 52 different fungal endophytes isolated from F. excelsior and F. angustifolia. Using these seven primer pairs, H. pseudoalbidus was identified in fruiting bodies and different types of ash tissues including dead leaves, dead petioles and discoloured or non‐discoloured wood. Along one twig, H. pseudoalbidus was detected at different levels of intensity, which depended on the distance from symptomatic tissue. The detection limit was 0.9–1.8 pg of genomic DNA per PCR. Of 50 analysed commercially available seedlings, six were infected with H. pseudoalbidus. Two SSR loci (SSR198 and SSR211) showed fragment length polymorphism. Our results showed that the new primers not only provide an easy and inexpensive means of detecting H. pseudoalbidus in ash tissues, but can also provide information on the genetic heterogeneity of the species.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号