首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of High Alternating Day and Night Temperature Conditions on the Boll Wall's Bt Protein Content and Nitrogen Metabolic Physiology in Bt Cotton
Institution:Key Laboratory of Genetics and Physiology in Yangzhou University, Yangzhou, Jiangsu 225009, China
Abstract:Object] In this study, the objective was to study changes in the boll wall's Bt protein concentration and related physiological characteristics under high alternating day and night temperature conditions in Bt cotton. Method] The experiments were conducted at the Key Laboratory of Genetics and Physiology, Yangzhou University during the 2011-2012 cotton growing seasons. The conventional Bt cotton cultivar Sikang-1 and hybrid cultivar Sikang-3 were used as the test materials. The boll wall's Bt protein content and nitrogen metabolic physiology were investigated under high temperatures (39/27 ℃, day/night) for 4-10 d at the peak boll stage. Result] The Bt protein content in the boll wall decreased as the stress time increased. Compared with the control (day/night, 32/25 ℃), the Bt protein content in the boll wall decreased significantly at 7 d under the high temperature stress. The values for cultivars Sikang-1 and Sikang-3 decreased by 18.44% and 14.82%, respectively, in 2011, and by 19.07% and 15.26%, respectively, in 2012. As the Bt toxin content decreased, the boll wall's free amino acid content and protease activity increased, while the soluble protein content and GPT (Glutamic-pyruvic transaminase) activity decreased significantly. Conclusion] The reduction in Bt protein synthesis and increase in the insecticidal protein degradation at the boll wall under high temperatures caused a reduction in the protein content, including the Bt protein content, which resulted in a reduction in insect resistance.
Keywords:Bt cotton  high temperature stress  Bt protein  nitrogen metabolism  boll wall  
点击此处可从《棉花学报》浏览原始摘要信息
点击此处可从《棉花学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号