首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Protective effect of salidroside on rats with hypoxic pulmonary hypertension by suppressing oxidative stress
Authors:HUANG Fei-fei  LI Yao-zhe  ZHANG Ting  WANG Liang-xing  HUANG Xiao-ying
Institution:Department of Respiratory Medicine, First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung of Wenzhou, Wenzhou 325000, China
Abstract:AIM: To study whether salidroside plays a protective role in hypoxia-induced pulmonary hypertension by suppressing oxidative stress. METHODS: Sprague-Dawley rats were randomly divided into 4 groups:normoxia (N) group, hypoxia for 4 weeks (H4) group, low-dose salidroside (hypoxia for 4 weeks and treatment with salidroside at 16 mg/kg, H4S16) group and high-dose salidroside (hypoxia for 4 weeks and treatment with salidroside at 32 mg/kg, H4S32) group. The mean pulmonary arterial pressure (mPAP), the weight ratio of right ventricle/(left ventricle+septum)RV/(LV+S)] and vessel wall area/vessel total area (WA/TA) were evaluated. The levels of malondialdehyde (MDA) in the serum and lung tissues were detected by colorimetric method. The levels of 8-iso-prostaglandin F (8-iso-PGF) in the serum and lung tissues were measured by ELISA. The activity of superoxide dismutase (SOD) in the serum was analyzed by hydroxylamine method. The expression of NAPDH oxidase 4 (NOX4) and SOD1 in the lung tissues was determined by Western blot. RESULTS: Compared with N group, the levels of mPAP, RV/(LV+S) and WA/TA in H4 group were significantly increased, which were apparently attenuated by salidroside injection in a dose-dependent manner. Meanwhile, salidroside administration apparently decreased the levels of MDA and 8-iso-PGF in the serum and lung tissues, as well as the expression of NOX4 in the lung tissues. Besides, compared with N group, the activity of SOD in the serum and the expression of SOD1 in the lung tissues in H4 group were significantly decreased, while administration of salidroside increased the activity of SOD in the serum and the expression of SOD1 in the lung tissues in a dose-dependent manner. CONCLUSION: Salidroside protects the pulmonary vessels from remodeling and attenuates hypoxia-induced pulmonary hypertension by inhibiting oxidative stress.
Keywords:Hypoxic pulmonary hypertension  Oxidative stress  Salidroside  
点击此处可从《园艺学报》浏览原始摘要信息
点击此处可从《园艺学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号