首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of carbon exchange in a boreal coniferous stand over a 10-year period: An integrated analysis based on ecosystem model simulations and eddy covariance measurements
Authors:Zhen-Ming Ge  Seppo KellomäkiXiao Zhou  Kai-Yun Wang  Heli Peltola
Institution:a School of Forest Sciences, University of Eastern Finland, PO Box 111, FIN-80101 Joensuu, Finland
b Shanghai Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200062, China
Abstract:In order to assess the capacity of the boreal forest ecosystem to intercept atmospheric carbon over a period of years, a climate-driven growth model (FinnFor, process-based) was applied to calculate the seasonal and inter-annual variability of net ecosystem CO2 exchange (NEE) and component carbon fluxes (gross primary production - GPP and total ecosystem respiration - TER) against a 10-year (1999-2008) period of eddy covariance (EC) measurements in a Scots pine (Pinus sylvestris L.) stand in Eastern Finland. Furthermore, the role of climatic factors, leaf area index (LAI) and physiological responses of trees regarding the ecosystem carbon fixation processes were evaluated. An hourly time-step was used to simulate the carbon exchange based on measured tree/stand characteristics and meteorological input for the experimental site, and the dynamic LAI was used throughout the 10-year simulations. The model predicted well the annual course of NEE compared to the measured values for most of the years, with the development of LAI (2.4-3.3 m2 m−2, as simulated). The simulated NEE over the study period shows that, on average, 62% of the variation refers to daily and 88% to monthly measured NEE. Both modeled and measured daily NEE showed similar responses to the temperature, photosynthetically active radiation and vapor pressure deficit during the growing seasons. In the simulation, the annual amount of GPP varied from 720.8 to 910.4 g C m−2 with a mean value of 825.3 g C m−2, and the annual mean TER/GPP ratio was 0.79, close to the measured value. Carbon efflux from the forest floor was the dominant contributor to the forest ecosystem respiration. The inter-annual variation of GPP mostly corresponded to the development of LAI, temperature sum and total incoming radiation over the 10-year simulation period. It was suggested that the process-based model could be applied to study the carbon processes for natural and management-induced dynamics of Scots pine forest ecosystem over longer periods across a wider climate gradient in the boreal zone.
Keywords:Ecosystem model  Inter-annual variation  Forest carbon fluxes  Boreal zone  Pinus sylvestris L    LAI development
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号