首页 | 本学科首页   官方微博 | 高级检索  
     检索      

沙区光伏设施干扰下近地表输沙通量分析
引用本文:唐国栋,蒙仲举,高永,郑海峰,贾瑞庭,石涛.沙区光伏设施干扰下近地表输沙通量分析[J].干旱区研究,2020(3):739-748.
作者姓名:唐国栋  蒙仲举  高永  郑海峰  贾瑞庭  石涛
作者单位:内蒙古农业大学沙漠治理学院/内蒙古自治区风沙物理与防沙治沙工程重点实验室;神华准格尔能源有限责任公司
基金项目:内蒙古自治区科技重大专项(zdzx2018058-3);国家重点研发计划(2016YFC0500906-3);内蒙古自治区科技创新引导资金“沙区光伏电场生态产业技术研发与示范”项目;国家自然基金项目(41461001)资助。
摘    要:为了揭示沙区建设光伏电站后沙尘运移特征和形态发育及演变过程,本文定量分析了主要风向(光伏板面向正南,风向为W,即光伏设施排布方向与风向夹角为0°)条件下,库布齐沙漠200 MWp光伏电站腹地区域光伏板不同位置输沙特征、地表风蚀状况和流场分布规律。结果显示:①光伏板不同部位输沙率随风速的增大而增加,不同风速下平均输沙率板间(1. 17 g·cm^-2·min^-1)>板后(0. 86 g·cm^-2·min^-1)>板前(0. 65 g·cm^-2·min^-1)。0~30 cm垂直断面上,不同部位90%以上输沙率集中分布在0~8 cm高度范围内,95%以上输沙率集中分布在0~11 cm高度范围内,挟沙气流中输沙率随高度的分布均符合指数规律递减(R2≥0. 98)。②沙粒平均跃移高度表现为板前>板后>板间,且与风速正相关。风沙流通量系数分析表明,板间和板后风沙流集中在近地层,而板前风沙流有向高层移动的趋势。③光伏板不同位置摩阻风速表现为板前(0. 562 0~0. 596 0 m·s^-1)>板后(0. 331 2~0. 436 0 m·s^-1)>板间(0. 325 2~0. 363 2 m·s^-1)。而且板前干沙层厚度显著高于其他位置,土壤可蚀性增加,综合作用下导致板前发生强烈掏蚀现象,观测期风蚀深度可达12. 44 cm。研究可为沙漠地区光伏电站内风沙危害的科学防治提供理论支撑。

关 键 词:输沙率  风沙流结构  拟合模型  风速廓线  光伏电站  库布齐沙漠

Near-surface sand-dust flux under the interference of photovoltaic facilities in sandy areas
TANG Guo-dong,MENG Zhong-ju,GAO Yong,ZHENG Hai-feng,JIA Rui-ting,SHI Tao.Near-surface sand-dust flux under the interference of photovoltaic facilities in sandy areas[J].Arid Zone Research,2020(3):739-748.
Authors:TANG Guo-dong  MENG Zhong-ju  GAO Yong  ZHENG Hai-feng  JIA Rui-ting  SHI Tao
Institution:(Desert Science and Engineering college/Key Laboratory of Aeolian Sand Physics and Sand Control Engineering in Inner Mongolia,Inner Mongolia Agricultural University,Hohhot 010011,Inner Mongolia,China;Shenhua Group Zhungeer Energy Co.,Ltd,Ordos 010300,Inner Mongolia,China)
Abstract:This study assesses the characteristics of sand transport,morphological development and their evolution after the construction of a photovoltaic (PV) power station in a sandy area. Field wind flow,sediment transport and surface elevation changes were analyzed in the hinterland of a 200 MWp PV power station in the Hobq Desert,where the angle between the arrangement of the PV facilities and wind direction is 0° (i. e.,the PV panels face S and the wind direction is W). The results show that: (1) The total sand transport rate sequences around the PV panels were highest in the zones between panels (1. 17 g·cm^-2·min^-1),followed by the zones behind panels (0. 86 g·cm^-2·min^-1),and finally the zones in front of panels (0. 65 g·cm^-2·min^-1). Sand transport rate was also found to decrease with increasing height. On the vertical section of 0-30 cm,more than 90% of the total sand transport flux was distributed within the height 0-8 cm,and over 95% of the total sand transport flux was distributed within the height 0-11 cm. The sediment discharge over three typical photovoltaic panel positions decreased with height and conformed to an exponential function distribution (R2≥0. 98). (2) The average saltation height was positively correlated with wind speed;saltation height was,in order from highest to lowest,in front of panels > behind panels > between panels. The sand flux coefficient of wind-sand flow was also analyzed,and it was found that sand flux tends to be highest in front of panels,whereas between and behind panels,the flux was mostly concentrated in the near ground layer. (3) Under the interference of PV panels,shear velocities were 0. 562 0-0. 596 0,0. 331 2-0. 436 0 m·s^-1,and 0. 325 2-0. 363 2 m·s^-1 for the zones in front of,behind,and between panels,respectively. The thickness of the dry sand layer of the zones in front of panels was also significantly higher than at other locations,increasing soil erodibility. A strong erosion occurred in the zones in front of panels by comprehensive action,and wind erosion depth reached 12. 44 cm during the observation period. This study provides a better technical scheme for wind-sand hazards for the case of solar PV power stations in order to ensure their stable and safe operation.
Keywords:sand transport  aeolian sediment flux structure  fitted model  wind profile  photovoltaic power station  the Hobq Desert
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号