首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carbon flow in the plant-soil-microbe continuum at different growth stages of maize grown in a Mollisol
Authors:Zhenhua Yu  Yansheng Li  Xiaobing Liu  Guanghua Wang
Institution:Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
Abstract:Understanding the photosynthetic carbon (C) dynamics in the plant–soil–microbe continuum is critical to the C sequestration in soils. However, such information is limited in maize (Zea mays L.) in Mollisols. Pot-grown maize was labelled with 13CO2 at the 10-leaf, 15-leaf, heading, milk and dent stages to investigate the photosynthetic C flow in a maize–soil system and its contribution to soil organic carbon (SOC) in Mollisols. The majority of fixed 13C was recovered in shoots, ranging from 44.7% to 78.6%. The allocation of 13C fixed at different growth stages to belowground (roots and soil) gradually decreased over the growing period, indicating that the strength of root C sink is stronger at the early stages. However, the proportion of 13C in dissolved organic C and microbial biomass C to that in SOC significantly increased as the growth stages advanced. Over the entire growth period, the contribution of root-derived C to SOC was estimated to be 5461 mg C plant?1 growth period?1, of which approximately 79% was synthesized during the vegetative stages. Therefore, the input of photosynthetic C by maize plants into SOC mainly occurred during the younger stages of the plant, favouring the storage of SOC in Mollisols.
Keywords:13CO2 pulse labelling  rhizodeposition  maize  soil organic carbon pools  Mollisols
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号