首页 | 本学科首页   官方微博 | 高级检索  
     检索      

低温胁迫下内源ABA、GA及比值对白菜型和 甘蓝型冬油菜抗寒性的响应
引用本文:刘海卿,方 园,武军艳,陈 奇,孙万仓,刘自刚,方 彦,米 超,蒲媛媛,赵艳宁,董小云,曾秀存,许耀照.低温胁迫下内源ABA、GA及比值对白菜型和 甘蓝型冬油菜抗寒性的响应[J].中国生态农业学报,2016,24(11):1529-1538.
作者姓名:刘海卿  方 园  武军艳  陈 奇  孙万仓  刘自刚  方 彦  米 超  蒲媛媛  赵艳宁  董小云  曾秀存  许耀照
作者单位:1. 甘肃省油菜工程与技术研究中心/甘肃省作物遗传改良与种质创新重点实验室/甘肃省干旱生境作物重点实验室/甘肃农业大学农学院兰州 730070;2. 河西学院农业与生物技术学院张掖 734000
基金项目:国家自然科学基金项目(31460356, 31560397, 31660404)、农业部产业技术体系项目(CARS-13)、国家重点基础研究发展计划(973计划)项目(2015CB150206)、国家农业科技成果转化项目(2014G10000317)、“油菜杂种优势利用技术与强优势杂交种创制”项目(2016YFD0101300)和甘肃省自然科学基金项目(145RJZG050, 1506RJZG051)资助
摘    要:为阐明低温胁迫下激素含量对冬油菜枯叶期的调控和对抗寒性的响应,为冬油菜抗寒性研究提供依据,以8份不同抗寒等级的白菜型和甘蓝型冬油菜为材料,利用盆栽试验,待幼苗长至5~6片真叶时在人工气候箱中进行低温处理(25℃、10℃、2℃、?5℃),分析低温胁迫后冬油菜内源ABA、GA含量和叶绿素的变化。回归分析表明温度与ABA含量存在显著的负相关,回归方程符合y=?ax+b,随着温度的降低,内源ABA含量呈先缓慢(10℃)后迅速上升(2℃、?5℃)的趋势,且温度处理间、温度与品种互作间差异极显著;由于激素间的拮抗作用GA含量变化则恰好相反。当在0℃以上低温时,品种间ABA含量无明显差异,当温度降到?5℃,白菜型冬油菜ABA含量明显高于甘蓝型,抗寒性强的品种高于抗寒性弱的品种。ABA含量的升高导致叶绿素含量的变化,随着温度降低,叶绿素含量呈先降低后增加的趋势,但总体呈下降趋势,且白菜型冬油菜和甘蓝型冬油菜之间存在不同的响应机制,这种作用使白菜型冬油菜叶绿素含量低于甘蓝型冬油菜,导致白菜型冬油菜枯叶期提前,提早进入越冬期,增加了对低温冻害的御性和避性。因此,随着温度的降低冬油菜叶片ABA含量上升,叶绿素降解,白菜型冬油菜更早进入枯叶期,枯叶期较早和降温后ABA含量高是白菜型冬油菜抗寒性较强的主要原因。

关 键 词:白菜型  甘蓝型  冬油菜  ABA  GA  叶绿素  低温胁迫  抗寒性
收稿时间:5/7/2016 12:00:00 AM
修稿时间:2016/6/23 0:00:00

Response of endogenous ABA and GA to cold resistance of Brassica rapa L. and Brassica napus L.
LIU Haiqing,FANG Yuan,WU Junyan,CHEN Qi,SUN Wancang,LIU Zigang,FANG Yan,MI Chao,PU Yuanyuan,ZHAO Yanning,DONG Xiaoyun,ZENG Xiucun and XU Yaozhao.Response of endogenous ABA and GA to cold resistance of Brassica rapa L. and Brassica napus L.[J].Chinese Journal of Eco-Agriculture,2016,24(11):1529-1538.
Authors:LIU Haiqing  FANG Yuan  WU Junyan  CHEN Qi  SUN Wancang  LIU Zigang  FANG Yan  MI Chao  PU Yuanyuan  ZHAO Yanning  DONG Xiaoyun  ZENG Xiucun and XU Yaozhao
Institution:Gansu Rapeseed Engineering Research Center / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement / Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China,Gansu Rapeseed Engineering Research Center / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement / Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China,Gansu Rapeseed Engineering Research Center / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement / Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China,Gansu Rapeseed Engineering Research Center / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement / Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China,Gansu Rapeseed Engineering Research Center / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement / Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China,Gansu Rapeseed Engineering Research Center / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement / Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China,Gansu Rapeseed Engineering Research Center / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement / Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China,Gansu Rapeseed Engineering Research Center / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement / Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China,Gansu Rapeseed Engineering Research Center / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement / Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China,Gansu Rapeseed Engineering Research Center / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement / Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China,Gansu Rapeseed Engineering Research Center / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement / Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China,College of Agronomy and Biotechnology, Hexi University, Zhangye 734000, China and College of Agronomy and Biotechnology, Hexi University, Zhangye 734000, China
Abstract:AbstractCold resistance is critical in winter rapeseed production in northern China. The abscisic acid (ABA) plant hormone, also known as “stress hormone” is an important signal molecule for the regulation of plant cold resistance. Study of possible regulatory mechanisms of endogenous ABA and GA is needed to develop a valuable insight into the mechanism of cold resistance both in winter rapeseedBrassica rapa L. andBrassica napus L. Thus we investigated the regulation of endogenous hormones in cold-resistance using eight winter rapeseed cultivars with different gradients of cold tolerance in a pot experiment. Different winter rapeseed cultivars were cultivated in a growth chamber with temperature conditions of 25℃, 10℃, 2℃ and-5℃, respectively. The endogenous ABA, GA and chlorophyll contents were measured. Regression analysis showed a significantly negative linear correlation between temperature and endogenous ABA content, with a regression equation ofy=-ax+ b. With decreasing of temperature, the endogenous ABA content increased slightly at 10℃ and then drastically at both 2℃ and-5℃. There were remarkable differences in ABA content among the temperature treatments and interaction of temperature and crop cultivar. The trend in endogenous GA content was the exact contrast of that of ABA, highlighting the antagonism between the both phytohormones. Temperature had no significant effect on endogenous ABA content for temperatures > 0℃ in different winter rapeseed cultivars. However, temperature effect on endogenous ABA content ofB. rapa was more significant than that of B.napus, and the cold tolerant cultivar more sensitive at a temperature of-5℃. The increase in ABA content contributed to the change in chlorophyll, which initially increased and then decreasing with decreasing temperature, and with an overall declining trend. The response mechanisms betweenB.rapa andB.napus were different, which resulted in lower chlorophyll content inB.rapa than inB.napus. The leaf wilting date ofB.rapa delayed well into wintering stage, with leaf wilting period of strongly cold resistant varieties occurring early to halt root nutrient uptake. Winter rapeseed root stored enough organic matter to increase its cold resistance and defend against low temperature injury. Thus with decreasing temperature, endogenous ABA content of winter rapeseed leaf increased. However, as chlorophyll degraded,B. rapa winter rapeseed leaf withered early, occurring in advance along with high ABA content after low temperature stress. This was the main reason and the stronger characteristic biological performance ofB.rapa over B.napus in terms of cold resistance.
Keywords:Brassica rapa L    Brassica napus L    Winter rapeseed  Endogenous ABA  Endogenous GA  Chlorophyll  Low temperature stress  Cold resistance
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《中国生态农业学报》浏览原始摘要信息
点击此处可从《中国生态农业学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号