首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Alternative spatial resolutions and estimation of carbon flux over a managed forest landscape in Western Oregon
Authors:Turner  David P  Cohen  Warren B  Kennedy  Robert E
Institution:(1) Forest Science Department, Oregon State University, Corvallis, OR 97331-7501, USA;(2) Pacific Northwest Research Station, Forest Sciences Laboratory, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, OR 97331-4401, USA
Abstract:Spatially-distributed estimates of biologically-driven CO2 flux are of interest in relation to understanding the global carbon cycle. Global coverage by satellite sensors offers an opportunity to assess terrestrial carbon (C) flux using a variety of approaches and corresponding spatial resolutions. An important consideration in evaluating the approaches concerns the scale of the spatial heterogeneity in land cover over the domain being studied. In the Pacific Northwest region of the United States, forests are highly fragmented with respect to stand age class and hence C flux. In this study, the effects of spatial resolution on estimates of total annual net primary production (NPP) and net ecosystem production (NEP) for a 96 km2 area in the central Cascades Mountains of western Oregon were examined. The scaling approach was a simple `measure and multiply' algorithm. At the highest spatial resolution (25 m), a stand age map derived from Landsat Thematic Mapper imagery provided the area for each of six forest age classes. The products of area for each age class and its respective NPP or NEP were summed for the area wide estimates. In order to evaluate potential errors at coarser resolutions, the stand age map was resampled to grain sizes of 100, 250, 500 and 1000 m using a majority filter reclassification. Local variance in near-infrared (NIR) band digital number at successively coarser grain sizes was also examined to characterize the scale of the heterogeneity in the scene. For this managed forest landscape, proportional estimation error in land cover classification at the coarsest resolution varied from –1.0 to +0.6 depending on the initial representation and the spatial distribution of the age class. The overall accuracy of the 1000 m resolution map was 42% with respect to the 25 m map. Analysis of local variance in NIR digital number suggested a patch size on the order of 100–500 m on a side. Total estimated NPP was 12% lower and total estimated NEP was 4% lower at 1000 m compared to 25 m. Carbon flux estimates based on quantifying differences in total biomass stored on the landscape at two points in time might be affected more strongly by a coarse resolution analysis because the differences among classes in biomass are more extreme than the differences in C flux and because the additional steps in the flux algorithm would contribute to error propagation. Scaling exercises involving reclassification of fine scale imagery over a range of grain sizes may be a useful screening tool for stratifying regions of the terrestrial surface relative to optimizing the spatial resolution for C flux estimation purposes.
Keywords:carbon  forest  landscape scale  net ecosystem production  net primary production  Oregon  spatial resolution
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号