首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Denitrification from the horticultural peats: effects of pH,nitrogen, carbon,and moisture contents
Authors:Yosef Amha  Heike Bohne
Institution:(1) Institute of Floriculture and Woody Plant Science, Leibniz University of Hannover, D-30419 Hannover, Germany
Abstract:Denitrification plays an important role in N-cycling. However, information on the rates of denitrification from horticultural growing media is rare in literature. In this study, the effects of pH, N, C, and moisture contents on denitrification were investigated using four moderately decomposed peat types (oligotrophic, mesotrophic, eutrophic, and transitional). Basal and potential denitrification rates (20°C, 18 h) from the unlimed peat samples varied widely from 2.0 to 21.8 and from 118.9 to 306.6 μg (N2O + N2)–N L−1 dry peat h−1, respectively, with the highest rates from the eutrophic peat and the lowest from the transitional one. Both basal and potential denitrification rates were substantially increased by 3.6–14- and 1.4–2.3-fold, respectively, when the initial pH (4.3–4.8) was raised to 5.9–6.5 units. Emissions of (N2O + N2)–N from oligotrophic, mesotrophic, and transitional peats were markedly increased by the addition of 0.15 g NO3–N L−1 dry peat but further additions had no effect. Denitrification rates were increased by increasing glucose concentration suggesting that the activity of denitrifiers in all peat types was limited by the low availability of easily decomposable C source. Increasing moisture contents of all peats from 40 to 50% water-filled pore space (WFPS) did not significantly (p > 0.05) increase (N2O + N2)–N emissions. However, a positive effect was observed when the moisture contents were increased from 60% to 70% WFPS in the eutrophic peat, from 70% to 80% in the transitional, from 80% to 90% in the oligotrophic and from 70% to 90% in the mesotrophic peat. It can be concluded that liming, N-fertilization, availability of easily decomposable C, and moist condition above 60% WFPS could encourage denitrification from peats although the rates are greatly influenced by the peat-forming environments (eutrophic > mesotrophic > oligotrophic > transitional types).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号