首页 | 本学科首页   官方微博 | 高级检索  
     检索      

油电混合果园自动导航车控制器硬件在环仿真平台设计与应用
作者姓名:吴应新  吴剑桥  杨雨航  李沐桐  甘玲  贡亮  刘成良
作者单位:上海交通大学 机械与动力工程学院,上海 200240
上海市农业机械研究所,上海 201106
广东省现代农业装备研究所 广州 510630
摘    要:果园由于面积范围广、地形复杂、壕沟多、杂草丛生、土壤湿度较高且土质较为疏松,对自动导航小车(AGV)的机械结构、控制系统,以及能源动力系统的设计都提出了更高的标准和要求。混合动力AGV小车可以满足果园中长距离移动的需求。为探索合适的混合动力AGV控制系统算法以及能量管理策略,同时减少设计过程中由于果园地形复杂导致的控制器设计验证迭代、需求多样化问题带来的人力、物力,以及时间成本,本研究针对果园面积广的特点,选择串联式油电混合动力系统进行AGV动力能源系统模型的搭建。另外,针对果园AGV需要适应地形范围广的特点,采用履带车模型结构,利用硬件在环仿真技术,以树莓派作为控制系统搭载控制算法实物,利用Matlab和RecurDyn软件建立包含能源动力系统、电机驱动系统、履带车行驶部分模型以及路面模型的系统实时仿真模型,最终实现了串联式混合动力AGV控制器硬件在环仿真功能。基于串级比例积分微分(PID)以及模糊控制器控制算法的仿真验证表明,模糊控制器控制算法能够减少参数调节带来的时间成本,在转向角度小时响应速度加快了50%,在转向角度大时串级PID控制器产生了10%的超调,而模糊控制器无超调,转向更加平稳。结果表明硬件在环仿真平台能够有效地应用于果园AGV控制器的开发,避免了控制实物试验,在降低成本的同时可以加快果园自动导航小车的开发过程。

关 键 词:果园  油电混合  AGV控制系统  硬件在环仿真  运动控制  能量模型  
收稿时间:2020-10-19

Design and Application of Hardware-in-the-Loop Simulation Platform for AGV Controller in Hybrid Orchard
Authors:WU Yingxin  WU Jianqiao  YANG Yuhang  LI Mutong  GAN Ling  GONG Liang  LIU Chengliang
Institution:School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Shanghai Agricultural Machinery Research Institute, Shanghai 201106, China
Guangdong Institute of Modern Agricultural Equipment, Guangzhou 510630, China
Abstract:The orchard is usually with a wide area, complex terrain, many trenches, overgrown weeds, high soil moisture and relatively loose soil, which greatly restrict the mechanization and intelligence, and put forward higher standards and requirements for the design of mechanical structure, control system and energy system of Automated Guided Vehicle(AGV). The hybrid automatic navigation vehicle can meet the need of long-distance movement in orchard. In order to explore the appropriate hybrid AGV control system algorithm and energy management strategy, and to reduce the manpower, material resources and time cost of the controller design process, firstly, according to the requirements of the current orchard construction on the terrain and soil, and corresponding to the GB/T 7031-2005, the orchard pavement level was divided into F grade and above. In addition, according to the requirment that orchard AGV needed to adapt to the characteristics of a wide range of terrain, the tracked vehicle model structure was adopted. Using the current hardware-in-the-loop simulation technology, raspberry pie was used as the control system to carry the control algorithm. Matlab and RecurDyn software were used to establish the system real-time simulation model which included energy power system, motor drive system, tracked vehicle driving model and road model. Finally, the hardware-in-the-loop simulation function of series hybrid AGV controller was realized. The simulation results of cascade PID and fuzzy controller control algorithm showed that the fuzzy controller control algorithm could reduce the time cost caused by parameter adjustment, and the response speed was increased by 50% when the steering angle was small. When the steering angle was large, the cascade PID controller produced 10% overshoot, while the fuzzy controller had no overshoot, and the steering was more stable. The simulation verification of energy management strategy based on deterministic rules and instantaneous optimization showed that the instantaneous optimization strategy could reduce fuel consumption by about 13.04%. The results showed that the hardware-in-the-loop simulation platform could be effectively applied to the development of orchard AGV controller, avoiding the control of physical experiments, reduce the cost and greatly speed up the development process.
Keywords:orchard  series hybrid  AGV control system  hardware-in-the-loop simulation  motion control  energy model  
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号