首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of compaction on soil surface water repellency
Authors:R Bryant    S H Doerr    G Hunt  & S Conan
Institution:Schools ofEngineering;and Environment and Society, Swansea University, Swansea SA2 8PP, UK
Abstract:Water repellency can reduce the infiltration capacity of soils over timescales similar to those of precipitation events. Compaction can also reduce infiltration capacity by decreasing soil hydraulic conductivity, but the effect of compaction on soil water repellency is unknown. This study explores the effect of compaction on the wettability of water repellent soil. Three air‐dry (water content ~4 g 100 g?1) silt loam samples of contrasting wettability (non‐repellent, strongly and severely water repellent) were homogenized and subjected to various pressures in the range 0–1570 kPa in an odeometer for 24 h. Following removal, sample surface water repellency was reassessed using the water drop penetration time method and surface roughness using white light interferometry. An increase in compaction pressure caused a significant reduction in soil surface water repellency, which in turn increases the soil's initial infiltration capacity. The difference in surface roughness of soils compacted at the lowest and highest pressures was significant (at P > 0.2) suggesting an increase in the contact area between sessile water drops and soil surfaces was providing increased opportunities for surface wetting mechanisms to proceed. This suggests that compaction of a water repellent soil may lead to an increased rate of surface wetting, which is a precursor to successful infiltration of water into bulk soil. Although there may be a reduction in soil conductivity upon compaction, the more rapid initiation of infiltration may, in some circumstances, lead to an overall increase in the proportion of rain or irrigation water infiltrating water repellent soil, rather than contributing to surface run‐off or evaporation.
Keywords:Hydrophobicity  soil compaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号