首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interactions of the microflora from nodulation problem and non-problem soils towards Rhizobium spp on agar culture
Authors:MJ Trinick  CA Parker  MJ Palmer
Institution:Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia 6009;CSIRO Division of Mathematics and Statistics, Private Bag, P.O., Wembley, Western Australia 6014
Abstract:Microorganisms (348 fungi, 388 actinomycetes and 319 bacteria) were isolated from a nodulation problem soil, a non-problem virgin soil, a cultivated problem soil and the rhizosphere of clover plants grown in the problem soil. Rhizobium trifolii TA 1 which failed to establish in problem soils was inhibited on laboratory media by a greater number of these soil microorganisms than the better soil colonizing R. trifolii (WU95 and WU290) and R. lupini (WU425). R. lupini was not inhibited or stimulated on agar by many soil or rhizosphere isolates. R. meliloti showed greater stimulation than either R. trifolii or R. lupini and was inhibited by relatively few soil microorganisms so that its poor soil survival was thought to be due to chemical or physical soil conditions rather than to biotic factors. The greatest incidence of rhizobial inhibitors, mainly associated with TA 1, was found among the isolates from the clover rhizosphere. There was a reduction in the relative numbers of rhizobial inhibitors isolated from the cultivated soil compared with the virgin problem soils, a result possibly due to the changed soil environment changing with cultivation, altered vegetation and the addition of superphosphate. Inhibitors of rhizobia were more frequent amongst the bacteria than fungi or actinomycetes. Strong stimulation was more commonly shown by fungi than by actinomycetes or bacteria. The interaction on agar between rhizobia and the soil microflora is related to soil colonization and persistence.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号