首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Variations of Soil Organic Carbon Following Land Use Change on Deep‐Loess Hillsopes in China
Abstract:Land use change is a key factor driving changes in soil organic carbon (SOC) around the world. However, the changes in SOC following land use changes have not been fully elucidated, especially for deep soils (>100 cm). Thus, we investigated the variations of SOC under different land uses (cropland, jujube orchard, 7‐year‐old grassland and 30‐year‐old grassland) on hillslopes in the Yuanzegou watershed of the Loess Plateau in China based on soil datasets related to soils within the 0–100 cm. Furthermore, we quantified the contribution of deep‐layer SOC (200–1,800 cm) to that of whole soil profiles based on soil datasets within the 0–1,800 cm. The results showed that in shallow profiles (0–100 cm), land uses significantly (p  < 0·05) influenced the distribution of SOC contents and stocks in surface layer (0–20 cm) but not subsurface layers (20–100 cm). Pearson correlation analysis indicated that soil texture fractions and total N were significantly (p  < 0·05 or 0·01) correlated with SOC content, which may have masked effects of land use change on SOC. In deep profiles (0–1,800 cm), SOC stock generally decreased with soil depth. But deep soils showed high SOC sequestration capacity. The SOC accumulated in the 100–1,800 m equalled 90·6%, 91·6%, 87·5% and 88·6% of amounts in the top 100 cm under cropland, 7‐year‐old grassland, 30‐year‐old grassland and jujube orchard, respectively. The results provide insights into SOC dynamics following land use changes and stressed the importance of deep‐layer SOC in estimating SOC inventory in deep loess soils. Copyright © 2017 John Wiley & Sons, Ltd.
Keywords:soil organic carbon  soil properties  jujube  deep soils  loess plateau
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号