首页 | 本学科首页   官方微博 | 高级检索  
     检索      

玉米和高粱用于碳同化和光呼吸的电子效率估算
引用本文:康华靖,陶月良,王立新,叶子飘,李红.玉米和高粱用于碳同化和光呼吸的电子效率估算[J].作物学报,2011,37(11):2039-2045.
作者姓名:康华靖  陶月良  王立新  叶子飘  李红
作者单位:1 温州科技职业学院园林系,浙江温州325006; 2 温州大学生命与环境科学学院, 浙江温州325035;3 井冈山大学井冈山生态环境研究中心,江西吉安343009; 4 井冈山大学数理学院,江西吉安343009
基金项目:国家自然科学基金项目(30960031); 江西省自然科学基金项目(2009GZN0076); 浙江省新世纪高等教育教学改革项目(ZC09154)资助
摘    要:为了探讨C4植物碳同化和光呼吸的电子效率,运用Li-6400光合仪同时测定玉米和高粱在30℃和380 μmol CO2 mol-1下叶片的气体交换和叶绿素荧光,结果表明,直角双曲线修正模型可较好地拟合所测的光响应曲线和快速光曲线,其拟合值与实测值较为一致。在此基础上算得玉米和高粱在光呼吸条件下参与碳同化的电子流分别为198.60 μmol m-2 s-1和178.00 μmol m-2 s-1,所占比率分别为75.34%和74.81%;参与光呼吸的电子流分别为7.04 μmol m-2 s-1和7.84 μmol m-2 s-1,所占比率分别为2.67%和3.29%。而根据Valentini和Epron的方法算得玉米和高粱碳同化的电子流分别为210.45 μmol m-2 s-1和188.54 μmol m-2 s-1,所占比例分别为82.68%和79.24%;参与光呼吸的电子流则分别为45.67 μmol m-2 s-1和49.40 μmol m-2 s-1,所占比率分别为17.32%和20.76%。以前法研究表明,玉米和高粱在光呼吸条件下,来自PSII的电子除流向光呼吸和碳还原外,还存在其他消耗电子的途径,证明其他消耗电子的途径并不能被忽略或其他途径所消耗电子的量并不是常数。后法过高地估算了玉米和高粱叶片中来自PSII的电子用于光呼吸的消耗量。两法的结果相差6倍左右。这对重新评估光呼吸在植物的光保护中所起的作用提供了理论依据。

关 键 词:高粱  玉米  光合模型  电子流量  光系统II
收稿时间:2011-01-21

Estimation of Use Efficiency of Electrons in Fixation of CO_2 and Photorespira-tion for Maize (Zea mays) and Sorghum (Sorghum bicolor) under Photorespi-ratory Conditions
KANG Hua-Jing,TAO Yue-Liang,WANG Li-Xin,YE Zi-Piao, LI Hong.Estimation of Use Efficiency of Electrons in Fixation of CO_2 and Photorespira-tion for Maize (Zea mays) and Sorghum (Sorghum bicolor) under Photorespi-ratory Conditions[J].Acta Agronomica Sinica,2011,37(11):2039-2045.
Authors:KANG Hua-Jing  TAO Yue-Liang  WANG Li-Xin  YE Zi-Piao    LI Hong
Institution:1.Department of Landscape Architecture, Wenzhou Vocational & Technical College, Wenzhou 325006, China;2.College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China;3.Research Center for Jinggangshan Eco-Environmental Sciences, Jinggangshan University, Ji’an 343009, China;4.Maths & Physics College, Jinggangshan University, Ji’an 343009, China
Abstract:Gas exchange and chlorophyll fluorescence for maize (Zea mays L.) and sorghum (Sorhumbicolor L.) at 380 μmol CO2 mol-1 and 30℃under photorespiratory condition, using a gas analyzer Li-6400, were measured. The results showed that the light response curve and rapid light curve (RLC) were well simulated by a modified rectangular hyperbola model. Calculation based on the simulated results indicated the electron flows to fix CO2 for maize and sorghum were 198.60 and 178.00 μmol m-2 s-1, with the rate of 75.34% and 74.81%, respectively. The electron flows in photorespiration of maize and sorghum were 7.04 and 7.84 μmol m-2 s-1, with the rate of 2.67% and 3.29%, respectively. While by method of Valentini and Epron, the electron flows to fix CO2 of maize and sorghum were 217.92 and 188.54 μmol m-2 s-1, with the rate of 82.68% and 79.24%, respectively, and those in photorespiration of maize and sorghum were 45.67 and 49.40 μmol m-2 s-1, with the rate of 17.32% and 20.76%, respectively. The results obtained by the former method showed that some electrons via PSII were used to CO2 assimilation and photorespiration, whereas others associated with electron-consuming processes (e.g. O2 acceptor cycle or water-water cycle) which should not be ignored, and the electron-consumption in this process was not constant under photorespiratory conditions. While the electron flows via PSII in photorespiration of maize and sorghum were overestimated by the latter method. The value of electron flows in photorespiration calculated by the latter method was about six times higher than those by the former. This is very important to evaluate the effect of photorespiration for plant protection.
Keywords:Maize  Sorghum  Photosynthetic model  Electron flow  Photosystem II  
本文献已被 CNKI 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号