首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Root activity and carbon metabolism in soils
Authors:P Bottner  Z Sallih  G Billes
Institution:(1) CEPE-CNRS, BP 5051, F-34033 Montpellier Cedex, France
Abstract:Summary Two different soils were amended with 14C-labelled plant material and incubated under controlled laboratory conditions for 2 years. Half the samples were cropped with wheat (Triticum aestivum) 10 times in succession. At flowering, the wheat was harvested and the old roots removed from the soil, so that the soil was continuously occupied by predominantly active root systems. The remaining samples were maintained without plants under the same conditions. During the initial stages of high microbial activity, due to decomposition of the labile compounds, the size of the total microbial biomass was comparable for both treatments, and the metabolic quotient (qCO2-C = mg CO2-C·mg–1 Biomass C·h–1) was increased by the plants. During the subsequent low-activity decomposition stages, after the labile compounds had been progressively mineralized, the biomass was multiplied by a factor of 2–4 in the presence of plants compared to the bare soils. Nevertheless, qCO2-C tended to reach similar low values with both treatments. The 14C-labelled biomass was reduced by the presence of roots and qCO2-14C was increased. The significance of these results obtained from a model experiment is discussed in terms of (1) the variation in the substrate originating from the roots and controlled by the plant physiology, (2) nutrient availability for plants and microorganisms, (3) soil biotic capacities and (4) increased microbial turnover rates induced by the roots.
Keywords:Root activity  Rhizosphere  C metabolism  Microbial biomass  Microbial activity  Wheat  Triticum aestivum
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号