首页 | 本学科首页   官方微博 | 高级检索  
     检索      


UV-absorbing compounds and susceptibility of weedy species to UV-B radiation
Authors:QIUJIE DAI  NANCY H FURNESS  MAHESH K UPADHYAYA
Institution:Faculty of Agricultural Sciences, University of British Columbia, Vancouver, BC Canada
Abstract:Stratospheric ozone (O3) depletion has led to increased terrestrial ultraviolet‐B (UV‐B) radiation (290–320 nm). Leaves exposed to this radiation produce UV‐absorbing compounds in the epidermal cells, which protect plants from UV‐B damage. To determine the role of UV‐absorbing compounds in the UV‐B sensitivity of weeds (common chickweed (Stellaria media), downy brome (Bromus tectorum), green smartweed (Polygonum scabrum), redroot pigweed (Amaranthus retroflexus), spotted cat’s‐ear (Hypochoeris radicata), and stork’s‐bill (Erodium cicutarium)) seedlings were exposed to 0, 4 (field ambient), 7 (18% O3 depletion) and 11 (37% O3 depletion) kJ m?2 d?1 of biologically effective UV‐B radiation in a greenhouse. Ultraviolet‐absorbing compounds were extracted from the second true‐leaf (0.5 cm2 samples) with methanol : distilled water : HCl (79 : 20 : 1) in an 85°C water bath for 15 min, and the absorbance of the extracts measured at 300 nm. The shoot dry biomass was recorded to determine the susceptibility to UV‐B radiation. Common chickweed was the most sensitive and green smartweed the least sensitive weed to UV‐B radiation. The latter accumulated more UV‐absorbing compounds and this accumulation occurred earlier compared with common chickweed. As UV‐BBE radiation levels increased from 0 to 11 kJ m?2 d?1, the green smartweed shoot biomass did not decline. However, the biomass of all five susceptible species declined despite an increase in the UV‐absorbing compounds in response to increased UV‐B radiation. Therefore, formation of a ‘UV‐screen’ in these species is not sufficient to fully prevent UV‐B damage. When the concentration of UV‐absorbing compounds in the six species was plotted against their susceptibility to UV‐B radiation, no relationship was observed. Thus, while the accumulation of UV‐absorbing compounds may be a major factor in the protection of certain species against UV‐B radiation and may offer some degree of defence in other species, it does not explain UV‐B susceptibility differences in weedy species in general.
Keywords:Amaranthus retroflexus            ambient UV-B              Bromus tectorum                        Erodium cicutarium                        Hypochoeris radicata                        Polygonum scabrum                        Stellaria media            UV-absorbing compounds  UV-B radiation  UV-B sensitivity  weeds
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号