首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microbial and soil parameters in relation to N mineralization in soils of diverse genesis under differing management systems
Authors:J Z Burket  R P Dick
Institution:(1) Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331-7306, USA e-mail: Richard.Dick@orst.edu Tel: +001-541 737 5718, Fax: +001-541-737 5715, US
Abstract: Oregon soils from various management and genetic histories were used in a greenhouse study to determine the relationships between soil chemical and biological parameters and the uptake of soil mineralized nitrogen (N) by ryegrass (Lolium perenne L.). The soils were tested for asparaginase, amidase, urease, β-glucosidase, and dipeptidase activities and fluorescein diacetate hydrolysis. Microbial biomass carbon (C) and N as well as metabolic diversity using Biolog GN plates were measured, as were total soil N and C, pH, and absorbance of soil extracts at 270 nm and 210 nm. Potentially mineralizable N (N0) and the mineralization rate constant (k) were calculated using a first order nonlinear regression model and these coefficients were used to calculate the initial potential rate of N mineralization (N0 k). Except for Biolog GN plates, the other parameters were highly correlated to mineralized N uptake and each other. A model using total soil N and β-glucosidase as parameters provided the best predictor of mineralized N uptake by ryegrass (R 2 =0.83). Chemical and biological parameters of soils with the same history of formation but under different management systems differed significantly from each other in most cases. The calculated values of the initial potential rate of mineralization in some cases revealed management differences within the same soil types. The results showed that management of soils is readily reflected in certain soil chemical and biological indicators and that some biological tests may be useful in predicting N mineralization in soils. Received: 31 January 1997
Keywords:  Enzyme assays  N mineralization  Biolog  Functional diversity  Management systems
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号