首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The course of phosphorus excretion in growing pigs fed continuously increasing phosphorus concentrations after a phosphorus depletion.
Authors:M Rodehutscord  M Faust  E Pfeffer
Institution:Department of Animal Nutrition, University of Bonn, Germany. mrod@itz.uni-bonn.de
Abstract:A balance study was performed in order to quantify the effect of continuously increased phosphorus (P) intake on faecal and urinary P excretion. The aim was to quantify the level of intake where regulatory P excretion becomes relevant for comparative digestibility measurements on P, and when the pig adapts its urinary P excretion to increased P intake. Phosphorus intake of growing pigs was continuously increased on a daily basis starting at a marginal level and P excretion via faeces and urine was continuously followed for 92 days. Two semi-synthetic diets were prepared with different proportions of Na2HPO4 resulting in 2.4 (diet 1) and 6.3 (diet 2) g P/kg DM. Concentration of Ca was adapted to achieve a Ca supply approximately 3.1 fold the digestible P supply. Six castrated male crossbred pigs (31 kg BW) were kept individually in metabolism crates after they had undergone a 14 d P depletion period during which they were fed diet 1 solely. Pigs received 1.04kg of diet 1 per day throughout the experiment, and each day the amount of feed and P supplied to pigs from diet 2 was increased by 12 g and 69 mg, respectively. ME supply was approximately 2.4 fold maintenance and average daily BW gain of pigs during the entire experiment was 690 +/- 30 g. While intake increased linearly, faecal excretion of P and Ca increased non-linearly and could be best described by third order polynomial functions. The proportion of ingested P not excreted via faeces followed a quadratic type of curve with a maximum of 81% at 25 days on experiment and P intake of 4.0 g/d. Thereafter, the proportion decreased continuously. The digestibility of P from diet 2, determined by the slope ratio technique, was constant and not affected by P intake up to a P intake of 5 g/d. Renal P excretion did not exceed inevitable losses until day 60 and increased exponentially thereafter when body P reserves were restored. It is concluded, that an adaptation to surplus P supply occurred earlier on the intestinal than on the renal level. While faecal P excretion appeared regulated depending on the actual requirement for P retention, the regulation via urine depended on the P status of the pig. Once the renal P excretion of growing pigs exceeds a level of 25 mg/d, intake of digestible P cannot be regarded sufficiently low to measure P digestibility as a capacity of the feedstuff.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号