首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of organic matier application and water regimes on the transformation of fertilizer nitrogen in a Philippine soil
Authors:Tomio Yoshida  Benjamin C Padre Jr
Institution:The International Rice Research Institute , Los Ba?os, Laguna , Philippines
Abstract:Greenhouse experiments using the tracer technique showed that about 20 per cent of the fertilizer nitrogen added as basal to the Maahas clay soil wa11 immobilized in submerged soils to which no organic material was added. The addition of organic matter to the soil increases the amount of nitrogen immobilized and the magnitude depends on the carbon to nitrogen ratio of the materials added. More fertilizer nitrogen waa immobilized in the soils under upland and alternate wet-and-dry conditions than under submerged soil conditions.

The uptake of fertilizer nitrogen by rice plants growing under submerged soil conditions ceased at the vegetative stage of growth because only a small amou11t of available nitrogen remains in the soil at this time, but the rice plant continued to absorb gradually untagged nitrogen from the soil throughout the reproductive etages of growth.

Losses of fertilizer nitrogen were great under the alternate wet-and-dry conditions (submerged-upland). The loss of nitrogen from the soli-plant system was reduced by the addition of dee straw, which also reduced the uptake of fertilizer nitrogen but not the total dry matter production under the experimental conditions. Fertilizer nitrogen immobilized during the first crop remained mostly in the soil throughout the full period of the second crop.

The total nitrogen uptake by rice plants was not affected by the soil moisture tension under the upland conaltlons used in the study but the movement of nitrogen from the leaves to the panicles during the reproductive etage seemed to decrease as the soil moisture tension increased.
Keywords:abiotic oxidation  adsorption  air-dry treatment  oxidative activity of soil  phenolic acid
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号