首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of heavy metal accumulation in apple orchard soils on microbial biomass and microbial activities
Authors:Masakazu Aoyama  Toshiyuki Nagumo
Institution:1. Faculty of Agriculture , Hirosaki University , Hirosaki , 036 , Japan aoyamam@cc.hirosaki-u.ac.jp;3. Faculty of Agriculture , Hirosaki University , Hirosaki , 036 , Japan;4. Faculty of Agriculture , Hokkaido University , Sapporo , 060 , Japan
Abstract:Abstract

The effects of heavy metals (Cu, Pb, and As) accumulated in apple orchard surface soils on the microbial biomass, dehydrogenase activity, and soil respiration were investigated. The largest concentrations of total Cu, Pb, and As found in the soils used were 1,010, 926, and 166 mg kg?1 soil, respectively. The amounts of microbial biomass C and N, expressed on a soil organic C and soil total N basis, respectively, were each negatively correlated with the amounts of total, 0.1 M HCI-extractable, and 0.1 M CaCl2-extractable Cu as logarithmic functions, the correlation coefficient being lowest for the 0.1 M CaCl2extractable Cu. Nevertheless, they were not correlated with the soil pH which was controlling the solubility of Cu in 0.1 M CaCl2. The dehydrogenase activity expressed per unit of soil organic C was also negatively correlated with the amounts of total, 0.1 M HCI-extractable Cu, and 0.1 M CaCl2-extractable Cu as logarithmic functions. However, the correlation coefficient was highest for the 0.1 M CaCl2-extractable Cu. Although the soil respiration per unit of soil total organic C did not show any significant correlations with the total concentrations of heavy metals, it showed negative significant correlations with the amount of 0.1 M HCI-extractable Cu, and to a greater extent, with the amount of 0.1 M CaCl2-extractable Cu. Both the dehydrogenase activity and respiration per unit of soil total organic C increased significantly with increasing soil pH. These results suggested that in apple orchard soils with heavy metal accumulation the microbial biomass was adversely affected by the slightly soluble Cu, whereas the microbial activities by the readily soluble Cu whose amount depended on the soil pH. The respiration per unit of microbial biomass C showed a positive significant correlation with the logarithmic concentration of total Cu. Furthermore, the contribution of fungi to substrate-induced respiration increased with increasing total Cu content in the soils.
Keywords:copper  dehydrogenase activity  heavy metals  microbial biomass  soil respiration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号