首页 | 本学科首页   官方微博 | 高级检索  
     检索      

大豆高密度遗传图谱的构建及产量相关性状QTL定位
引用本文:王博,董莹莹,付雪,刘赫禹,张翔超,刘冀,史飞飞,赵雪,韩英鹏,李文滨,滕卫丽.大豆高密度遗传图谱的构建及产量相关性状QTL定位[J].中国油料作物学报,2022,44(6):1228.
作者姓名:王博  董莹莹  付雪  刘赫禹  张翔超  刘冀  史飞飞  赵雪  韩英鹏  李文滨  滕卫丽
作者单位:东北农业大学大豆研究所,大豆生物学教育部重点实验室,农业农村部东北大豆生物学与遗传育种重点实验室,黑龙江 哈尔滨,150030
基金项目:黑龙江省“百千万”工程科技重大专项(2019ZX16B01-1);现代农业产业技术体系建设专项(CARS-04-PS04);国家自然科学基金(31471517)
摘    要:大豆是重要的粮油作物,而我国大豆主要依靠进口,提高大豆产量对保障国家粮油安全意义重大。为定位大豆产量相关性状,本研究以产量差异显著的东农42和东农50作为杂交亲本,构建了包含168个家系的重组自交系(recombination inbred lines,RILs)群体,对其进行全基因组重测序,构建高密度遗传图谱,并利用R/qtl软件的复合区间作图法(composite interval mapping,CIM)结合两年六点的大豆产量相关性状表型数据,进行QTL定位。结果表明:利用测序获得的660 316个SNP标记构建了一张分布在20个连锁群的包含6227个bin标记的大豆高密度遗传图谱,总图距和平均图距分别为2739.15 cM,0.44 cM。在12个染色体上定位到22个大豆产量相关性状QTL,四粒荚数、单株荚数、单株粒重和百粒重性状定位到的QTL分别为5、4、5和8个。在3号和19号染色体上各有一段基因组区域在两年间重复定位,涉及6个主效QTL,分别为qNFSP-19-1(22.976%)、qNFSP-19-2(11.977%)、qNFSP-19-3(17.203%)、qHSW-3-1(11.346%)、qHSW-3-2(11.346%)和qHSW-3-3(11.175%),加性效应值均为负值。在3、7、11、12和20号染色体上新定位到7个产量相关性状QTL,其中表型贡献率最高的为qHSW-3-3(14.276%),包含具有重复定位区间的qHSW-3-2qHSW-3-3。与前人定位的结果相比,更多QTL极大地缩短了定位区间,表明本文报道的高密度遗传图谱更准确,可以为大豆产量相关性状的精细定位、候选基因的挖掘及分子标记辅助育种奠定基础。

关 键 词:大豆  高密度遗传图谱  四粒荚数  单株荚数  单株粒重  百粒重  QTL  
收稿时间:2021-10-25

Construction of high density genetic map and QTL mapping of yield related traits in soybean
Bo WANG,Ying-ying DONG,Xue FU,He-yu LIU,Xiang-chao ZHANG,Ji LIU,Fei-fei SHI,Xue ZHAO,Ying-peng HAN,Wen-bin LI,Wei-li TENG.Construction of high density genetic map and QTL mapping of yield related traits in soybean[J].Chinese Journal of Oil Crop Sciences,2022,44(6):1228.
Authors:Bo WANG  Ying-ying DONG  Xue FU  He-yu LIU  Xiang-chao ZHANG  Ji LIU  Fei-fei SHI  Xue ZHAO  Ying-peng HAN  Wen-bin LI  Wei-li TENG
Institution:Institute of Soybean Research, Key Laboratory of Soybean Biology in the Ministry of Education, Key Laboratory of Soybean Biology and Breeding (Genetics) of the Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
Abstract:To accelerate molecular marker-assisted breeding for soybean, a recombinant inbred lines (RILs) population (F2:10) containing 168 lines was constructed from Dongnong 42 and Dongnong 50 for constructing a high density genetic map. The two parents are significantly different on yield. QTL analysis was carried out by using the compound interval mapping (CIM) method of R/qtl software combined with phenotypic data on yield-related traits at 6 environments in 2 years. Results showed that 660 316 SNP markers obtained by sequencing could be used to construct a high-density genetic map of soybean containing 6227 bin markers distributed in 20 linkage groups. The general and average map distances were 2739.15 cM and 0.44 cM respectively. 22 QTLs related to yield traits were mapped on 12 chromosomes. QTLs for number of four-seed-pod (NFSP), number of pods per plant (NPPP), seed weight per plant (SWPP), 100-seed weight (HSW) were 5, 4, 5 and 8 respectively. There was a genomic region on each of the chromosomes 3 and 19. They were repeatedly located in 2 years, involving 6 major QTLs, namely qNFSP-19-1 (22.976%), qNFSP-19-2 (11.977%), qNFSP-19-3 (17.203%), qHSW-3-1 (11.346%), qHSW-3-2 (11.346%) and qHSW-3-3 (11.175%), all these QTLs had negative additive effects. 7 QTLs for yield-related traits were newly mapped on chromosomes 3, 7, 11, 12 and 20, among which qHSW-3-3 (14.276%) had the highest phenotypic contribution, including qHSW-3-2 and qHSW-3-3 with repetitive mapping intervals. Compared with the results of previous co-mapping, more QTLs greatly shortened the mapping interval, which showed the accuracy of the high-density genetic map constructed in this study.
Keywords:soybean  high density genetic map  number of four-seed-pod  pods per plant  seed weight per plant  100-seed weight  QTL  
点击此处可从《中国油料作物学报》浏览原始摘要信息
点击此处可从《中国油料作物学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号