首页 | 本学科首页   官方微博 | 高级检索  
     检索      

水稻精量旱穴播机穴距电液比例控制系统的设计与试验
引用本文:付 威,罗锡文,曾 山,王在满,王传雯,袁琦堡.水稻精量旱穴播机穴距电液比例控制系统的设计与试验[J].农业工程学报,2015,31(9):25-31.
作者姓名:付 威  罗锡文  曾 山  王在满  王传雯  袁琦堡
作者单位:1. 华南农业大学工程学院,广州 510642; 2. 华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642; 3. 石河子大学机械电气工程学院,石河子 832000;,1. 华南农业大学工程学院,广州 510642; 2. 华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642;,1. 华南农业大学工程学院,广州 510642; 2. 华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642;,1. 华南农业大学工程学院,广州 510642; 2. 华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642;,1. 华南农业大学工程学院,广州 510642; 2. 华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642;,1. 华南农业大学工程学院,广州 510642; 2. 华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642;
基金项目:948计划项目"南方水稻农机农艺结合新技术引进与消化推广"(2011-G18(2));公益性行业专项"水稻机械化精准种植模式与关键技术集成示范"(201203059)
摘    要:针对目前国内水稻精量旱穴播机普遍采用多组链轮或多组齿轮改变传动比,实现株(穴)距调节,但株距调节范围有限的问题,为了增加穴距调节范围,实现穴距的无级调节,研制了一种基于可编程逻辑控制器(programmable logic controller,PLC)与触摸屏的电液比例控制系统,实时调整液压马达转速,实现播种作业的实时调节。液压系统主要由液泵、液压马达和比例流量阀等组成;控制系统通过Delt WPLSoft V2.37编程软件,编制PLC梯形图程序,采用监视与控制通用系统(monitor and control generated system,MCGS)组态软件开发出人机交互界面,可在交互界面上输入地轮直径大小和穴距,以及设定比例流量阀初始值和阈值,调整比例积分微分(proportion integration differentiation,PID)参数,并通过人机交互界面实现播种作业时的穴距调节和作业速度监测。通过台架试验和田间试验表明,在作业速度2.8~3.2和3.2~3.6 km/h时,台架试验穴距合格率和田间试验播种穴距合格率均为100%,满足播种要求;在作业速度3.6~4 km/h范围内,台架试验穴距合格率达到89%,田间试验穴距合格率为70%,根据NY/T987-2006《铺膜穴播机作业质量》农业行业标准,田间试验穴距合格率80%,不能满足穴播机作业质量标准。研究结果表明,水稻精量旱穴播机选用型孔轮式排种器,但田间播种作业成穴性效果受风阻、机架振动和种子下落速度等影响较大,作业速度应控制在2.8~3.6 km/h为宜,当作业速度增大对成穴性影响尤为显著。台架试验和田间试验结果都表明电液比例控制穴距系统的可行性,为播种机株(穴)距调节技术提供了科学依据,为播种机的相关设计研究提供技术参考。

关 键 词:农业机械  可编程逻辑控制器(PLC)  控制系统  电液比例  水稻旱穴播机  穴距控制  精量播种
收稿时间:2/6/2015 12:00:00 AM
修稿时间:2015/3/31 0:00:00

Design and experiment of electro-hydraulic proportional control hill distance system of precision rice hill-drop drilling machine for dry land
Fu Wei,Luo Xiwen,Zeng Shan,Wang Zaiman,Wang Chuanwen and Yuan Qibao.Design and experiment of electro-hydraulic proportional control hill distance system of precision rice hill-drop drilling machine for dry land[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(9):25-31.
Authors:Fu Wei  Luo Xiwen  Zeng Shan  Wang Zaiman  Wang Chuanwen and Yuan Qibao
Institution:1. College of Engineering ,South China Agricultural University, Guangzhou 510642, China; 2. Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; 3. College of Mechanical and Electrical Engineering, Shi hezi University, Shihezi 832003, China;,1. College of Engineering ,South China Agricultural University, Guangzhou 510642, China; 2. Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China;,1. College of Engineering ,South China Agricultural University, Guangzhou 510642, China; 2. Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China;,1. College of Engineering ,South China Agricultural University, Guangzhou 510642, China; 2. Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China;,1. College of Engineering ,South China Agricultural University, Guangzhou 510642, China; 2. Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; and 1. College of Engineering ,South China Agricultural University, Guangzhou 510642, China; 2. Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China;
Abstract:Abstract: Rice precision hill-drop drilling technique in dry land uses fixed hill spacing to achieve the orderly planting of crops and attain good ventilating and day-lighting effects in the rice field. Meanwhile, the technique is beneficial to improve the root growth and root structure, and increase the lodging resistance. At present, the planting machine in China generally adopts groups of sprockets or groups of gears to change the transmission ratio and realize the adjustment of hill spacing. However, by using the machine available, the adjustment range of hill spacing is very limited. In order to increase the adjustment range of hill spacing and realize the stepless regulation of hill spacing, an automatic electro-hydraulic proportion regulation system was developed based on the programmable logic controller (PLC) and the touch screen, which could realize the real-time adjustment of the hydraulic motor speed and the planting operation together. In the regulation system, the hydraulic unit was mainly composed of liquid pump, hydraulic motor and proportional flow valve and so on. Simultaneously, the PLC ladder diagram procedure was programmed by the Delt WPLSoft V2.37 programming software, and the man-machine interface was developed by using the monitor and control generated system (MCGS) configuration software. Through the man-machine interface developed, the diameter of land wheel and the hill spacing value could be inputted, the initial values and the threshold of proportional flow valves could be set to adjust proportion integration differentiation (PID) parameters, and the adjustment of hill spacing and the monitoring of operation speed could be realized. As demonstrated by the bench test and field test, on one hand, it was found that when working within the speed ranges of 2.8-3.2 and >3.2-3.6 km/h, the qualified rates of hill spacing in both tests had reached 100%, which met the requirements of sowing; on the other hand, when working within the speed range of >3.6-4 km/h, the qualified rates of hill spacing in both tests were 89% and 70%, respectively. According to "The operation quality of the film-covering hill-drop drilling machine" (NY/T987-2006) - the standard of the agricultural industry, within the speed range of >3.6-4 km/h, the qualified rate in the field test was below 80%, and it failed to meet the requirements of the operating quality of film-covering hill-drop drilling. It could be concluded that when rice precision hill-drop drilling technique in dry land chose the type hole-wheel seed-metering device, the effect of hill formation in the field test was influenced to somewhat higher extent by the wind resistance, frame vibration and falling velocity of seeds and so on, and the operation speed should be controlled within the range of 2.8-3.6 km/h, for the higher the speed was, the more obvious the influence on the hill formation performance would be. Both of the results of the bench test and field test demonstrated that the electro-hydraulic proportion regulation system was feasible for the rice hill spacing adjustment. The research can provide the theoretical basis for the hill spacing adjustment technique of planting machine and the technical reference for the related design of planting machine.
Keywords:agricultural machinery  programmable logic controllers(PLC)  control systems  electro-hydraulic proportional  rice hill-drop drilling machine for dry land  hill distance control  precision sowing
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号