首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Post-fire hillslope erosion response in a sub-alpine environment, south-eastern Australia
Authors:HG Smith  D Dragovich
Institution:aSchool of Geosciences, Madsen Building F09, University of Sydney, Sydney, New South Wales, 2006, Australia
Abstract:This paper examines post-fire erosion response in a sub-alpine environment in south-eastern Australia for a period of 2.2 years. Few studies have examined fire impacts on sediment transfer in this environment. Erosion pins were used in grids located at upper, mid and lower slope positions on adjacent burnt and unburnt hillslopes to assess fire effects on the extent of surface level change. The results indicated that there was a significant difference between the surface level change regimes on the burnt and unburnt hillslopes. Estimated erosion rates for the burnt slope over the study period ranged from 2.7 to 94.3 t ha− 1, which could be considered low given the high slope angles, high precipitation and moderate fire severity. Slope position was critical in modifying post-fire erosion response, as it controlled slope angle and the rate of surface cover regrowth. Analysis of lower slope sites, for which more detailed data was available, indicated a second delayed erosion peak after the initial elevated post-fire response during the following spring snowmelt period. Surface recovery on the lower burnt site was slow, with vegetation cover still comparatively low 2.3 years after the fire. Evidence of post-fire sediment supply limitation was found on this site, with a declining rate of increase in the magnitude of total surface level change, despite limited regrowth and an increasing number of precipitation events > 20 mm for measurement intervals since the fire. Modification of the hillslope surface by fire leads to changing hillslope erosion process dominance in this environment. The post-fire hillslope undergoes erosion by direct rain-drop impact and overland flow, whereas the unburnt slope rarely experiences overland flow due to the thick ground cover. As a result surface level change on the unburnt slope was largely influenced by wetting–drying effects rather than sediment transfer by surface flow. Downslope biotransfer appears to be the dominant sediment movement process in the unburnt sub-alpine forest environment.
Keywords:Wildfire  Soil erosion  Sub-alpine environment  Erosion pins
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号