首页 | 本学科首页   官方微博 | 高级检索  
     检索      

春小麦品种墨波成株期抗条锈基因遗传解析
引用本文:张调喜,闫佳会,侯璐,姚强,郭青云,马麟.春小麦品种墨波成株期抗条锈基因遗传解析[J].植物保护学报,2018,45(1):60-66.
作者姓名:张调喜  闫佳会  侯璐  姚强  郭青云  马麟
作者单位:青海大学农林科学院, 青海大学省部共建三江源生态与高原农牧业国家重点实验室;青海省农林科学院, 农业部西宁作物有害生物科学观测实验站, 青海省农业有害生物综合治理重点实验室, 西宁 810016,青海大学农林科学院, 青海大学省部共建三江源生态与高原农牧业国家重点实验室;青海省农林科学院, 农业部西宁作物有害生物科学观测实验站, 青海省农业有害生物综合治理重点实验室, 西宁 810016,青海大学农林科学院, 青海大学省部共建三江源生态与高原农牧业国家重点实验室;青海省农林科学院, 农业部西宁作物有害生物科学观测实验站, 青海省农业有害生物综合治理重点实验室, 西宁 810016,青海大学农林科学院, 青海大学省部共建三江源生态与高原农牧业国家重点实验室;青海省农林科学院, 农业部西宁作物有害生物科学观测实验站, 青海省农业有害生物综合治理重点实验室, 西宁 810016,青海大学农林科学院, 青海大学省部共建三江源生态与高原农牧业国家重点实验室;青海省农林科学院, 农业部西宁作物有害生物科学观测实验站, 青海省农业有害生物综合治理重点实验室, 西宁 810016,大通县农业技术推广中心, 青海 西宁 810100
基金项目:青海省自然科学基金(2017-ZJ-793,2016-HZ-810),国家自然科学基金(31660513)
摘    要:为明确春小麦品种墨波成株期抗条锈性遗传基础,以墨波与感病品种Taichung29(T29)杂交创建F_(2∶3)分离群体,通过青海西宁市和海东市2个试验点2年田间病圃鉴定,应用植物数量性状主基因+多基因混合遗传模型单个分离世代分析方法对墨波/T29 F2群体的抗性遗传效应进行了分析。结果发现群体单株/家系的病害严重度和反应型在2个试验点均未呈现连续性分布,但是在不同区段内,群体株系间又表现出较明显的连续性变异,初步推测,墨波成株期对小麦条锈病抗性具有由主效基因和微效基因共同控制的特征;遗传分析结果表明,墨波的成株期抗条锈性最优遗传模型均为2对主基因遗传,并受微效基因影响,在海东市试验点用反应型数据分析得到的最优遗传模型为C-6模型2MG-EEAD,即2对等显性主基因遗传,在海东市及西宁市试验点用严重度数据分析得到的最优遗传模型均为C-1模型2MG-ADI,即2对主基因加性-显性-上位性遗传。

关 键 词:春小麦  墨波  抗条锈性  遗传模型
收稿时间:2017/12/12 0:00:00

Genetic analysis of spring wheat Mobo stripe rust resistance at adult stage
Zhang Tiaoxi,Yan Jiahui,Hou Lu,Yao Qiang,Guo Qingyun and Ma Lin.Genetic analysis of spring wheat Mobo stripe rust resistance at adult stage[J].Acta Phytophylacica Sinica,2018,45(1):60-66.
Authors:Zhang Tiaoxi  Yan Jiahui  Hou Lu  Yao Qiang  Guo Qingyun and Ma Lin
Institution:Key Laboratory of Agricultural Integrated Pest Management, Academy of Agriculture and Forestry Sciences, Qinghai University;State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agriculture and Forestry Sciences;Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Xining 810016, Qinghai Province, China,Key Laboratory of Agricultural Integrated Pest Management, Academy of Agriculture and Forestry Sciences, Qinghai University;State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agriculture and Forestry Sciences;Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Xining 810016, Qinghai Province, China,Key Laboratory of Agricultural Integrated Pest Management, Academy of Agriculture and Forestry Sciences, Qinghai University;State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agriculture and Forestry Sciences;Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Xining 810016, Qinghai Province, China,Key Laboratory of Agricultural Integrated Pest Management, Academy of Agriculture and Forestry Sciences, Qinghai University;State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agriculture and Forestry Sciences;Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Xining 810016, Qinghai Province, China,Key Laboratory of Agricultural Integrated Pest Management, Academy of Agriculture and Forestry Sciences, Qinghai University;State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agriculture and Forestry Sciences;Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Xining 810016, Qinghai Province, China and Datong Agricultural Technology Promotion Center, Xining 810100, Qinghai Province, China
Abstract:In order to clarify the resistance hereditary rule of spring wheat Mobo(Potam-S70) to stripe rust, Mobo was crossed with the susceptible cultivars Taichung 29(T29) to produce F2:3 segregating populations. Stripe rust resistance of F2:3 segregating populations was tested separately on Xining and Haidong fields in two years. The method of joint segregation analysis of single generation of major gene plus polygene mixed inheritance model was used to analyze the inheritance of resistance stripe rust in Mobo. The results showed for F2 and F3 line populations, both the disease severity and infection type data which were uncontinuous distributions with some part showed continuous, preliminary indicated that stripe rust resistance of Mobo was complicated controlled by major gene and minor genes together. Genetic analysis showed that, stripe rust resistance of Mobo was controlled by two major genes, partially by minor genes, when tested in Haidong, and analysis on infection type data results showed the most fitted genetic model for the resistance was C-6 2MG-EEAD, which is, two equal dominance effect major genes, but analysis on disease severity data, as well as tested in Xining, either analysis on infection type data or disease severity data, the most fitted genetic model for the resistance was C-1 2MG-ADI, two additive-major-epistatic interaction major genes.
Keywords:spring wheat  Mobo(Potam-S70)  stripe rust resistance  inheritance model
本文献已被 CNKI 等数据库收录!
点击此处可从《植物保护学报》浏览原始摘要信息
点击此处可从《植物保护学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号