首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Origin of carbohydrate degradation products in L-Alanine/D-[(13)C]glucose model systems
Authors:Yaylayan V A  Keyhani A
Institution:McGill University, Department of Food Science and Agricultural Chemistry, Quebec, Canada. yaylayan@macdonald.mcgill.ca
Abstract:Maillard model systems consisting of labeled D-(13)C]glucoses and L-(13)C]alanines have been utilized to identify the origin of carbon atoms in glycolaldehyde, pyruvaldehyde, 1-hydroxy-2-propanone (acetol), 2,3-butanedione, 3-hydroxy-2-butanone, 2,3-pentanedione, and compounds containing C(5) and C(6) intact glucose carbon chains. The origin of carbon atoms in glycolaldehyde and pyruvaldehyde was inferred from the analysis of label incorporation pattern of methyl and dimethylpyrazines. The origin of carbon atoms in the remaining compounds was determined by direct analysis. The data indicated that glycolaldehyde incorporated intact C5-C6 and C1-C2 carbon chains of glucose. Acetol and pyruvaldehyde incorporated intact C1-C2-C3 and C4-C5-C6 carbon chains of glucose. On the other hand, 2, 3-butanedione and 3-hydroxy-2-butanone incorporated intact C3-C4-C5-C6 carbon chain of glucose. In addition, analysis of compounds containing intact glucose C(5) carbon chains have indicated that glucose in the presence of L-alanine can lose either C-1 atom to produce a pentitol moiety responsible for the formation of furanmethanol or it can lose the C-6 atom to produce a pentose moiety responsible for the formation of furfural. Plausible mechanisms, consistent with the observed label incorporation, were proposed for the formation of sugar degradation products.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号