首页 | 本学科首页   官方微博 | 高级检索  
     检索      

水氮耦合及种植密度对绿洲灌区玉米光合作用和 干物质积累特征的调控效应
引用本文:魏廷邦,柴强,王伟民,王军强.水氮耦合及种植密度对绿洲灌区玉米光合作用和 干物质积累特征的调控效应[J].中国农业科学,2019,52(3):428-444.
作者姓名:魏廷邦  柴强  王伟民  王军强
作者单位:1 甘肃省农业工程技术研究院,甘肃武威 7330062 甘肃省干旱生境作物学重点实验室,兰州 730070
基金项目:国家公益性行业(农业科研专项201503125-3);国家科技支撑计划子课题(2015BAD22B04-03);国家自然科学基金(3156020171,41867013)
摘    要:目的 针对土壤水分、氮肥供应不足以及玉米早衰、种植密度不合理等严重制约绿洲灌区玉米的生产问题,通过研究不同水氮配比及种植密度对玉米光合作用、干物质积累特征和产量的影响,以期为该区玉米高产、稳产提供技术支撑。方法 2016—2017年,于河西绿洲灌区进行大田试验,以先玉335为参试品种,采用裂裂区设计,灌水水平(W1:4 050 m 3·hm -2,W2:3 720 m 3·hm -2)做主区,施氮水平(不施氮N0:0,低施氮N1:300 kg·hm -2,高施氮N2:450 kg·hm -2)为裂区,种植密度(低密度D1:75 000株/hm 2,中密度D2:97 500株/hm 2,高密度D3:120 000 株/hm 2)为裂裂区,测定光合速率、干物质积累量和产量等指标。 结果 施氮量、种植密度对玉米全生育期净光合速率、干物质最大增长速率及其出现天数、干物质积累量、产量、WUE和氮肥利用率有显著影响。水肥耦合可增强玉米密植条件下的光合作用,提高干物质最大增长速率,提前干物质最大增长速率出现的天数,增大干物质积累量和产量。在减量20%灌水和高施氮水平下,中密度处理的全生育期净光合速率较低密度和高密度分别提高17.31%和11.43%;高密度和中密度处理的干物质最大增长速率及最大增长速率出现天数较低密度处理分别提高21.07%、7.52%和提前6.7 d、4.1 d;高密度处理的干物质积累量较中密度、低密度分别提高4.27%和10.59%,中密度处理的产量、水分利用效率和氮肥利用率较低密度、高密度处理分别提高24.2%、11.4%、29.9%和29.2%、18.4%、13.8%。在减量20%灌水条件下,中密度高施氮处理的全生育期净光合速率、干物质积累量和产量分别较中施氮、不施氮分别提高7.34%、11.63%、14.63%和49.54%、44.53%、69.03%;高密度高施氮处理的干物质最大增长速率及最大增长速率出现天数较中施氮、不施氮分别提高19.07%、54.35%和提前3.9 d、6.8 d;同等密度高施氮处理的氮肥利用率较低施氮处理提高24.5%。综上,减量20%灌水与高施氮耦合主要通过提高密植玉米的光合作用和干物质积累速率,延长干物质积累的持续时间,提高WUE和氮肥利用率,从而对干物质积累量和产量产生调控作用。结论 在绿洲灌区,采用水肥耦合(生育期减量20%灌水(3 720 m 3·hm -2)、施氮量450 kg·hm -2、中密度97 500株/hm 2)的最优栽培模式,可为进一步发掘密植条件下玉米高产、高效栽培提供技术指导。

关 键 词:水氮耦合  种植密度  绿洲灌区  光合作用  干物质积累特征  
收稿时间:2018-07-05

Effects of Coupling of Irrigation and Nitrogen Application as well as Planting Density on Photosynthesis and Dry Matter Accumulation Characteristics of Maize in Oasis Irrigated Areas
WEI TingBang,CHAI Qiang,WANG WeiMin,WANG JunQiang.Effects of Coupling of Irrigation and Nitrogen Application as well as Planting Density on Photosynthesis and Dry Matter Accumulation Characteristics of Maize in Oasis Irrigated Areas[J].Scientia Agricultura Sinica,2019,52(3):428-444.
Authors:WEI TingBang  CHAI Qiang  WANG WeiMin  WANG JunQiang
Institution:1 Gansu Academy of Agri-engineering and Technology, Wuwei 733006, Gansu2 Gansu Provincial Key Laboratory of Arid Land Crop Science, Lanzhou 730070
Abstract:【Objective】 In oasis irrigation agricultural region, some problems has caused serious influenced of maize production, such as soil available water and nitrogen hunger, premature senescence and unreasonable planting density. To provide technical support for high and stable maize yield, the effects of different ratio of application irrigation and nitrogen and planting density on photosynthesis, dry matter accumulation characteristics and maize yield were studied. 【Method】 Photosynthetic ability, dry matter accumulation characteristics and yield were determined under two-years field experiment, which was carried out in Hexi Oasis irrigation region of Gansu province from 2016 to 2017. In this research, the cultivar “Xianyu335” was applied as research material. A split-split plot design was used as this experiment, with two irrigation application amount treatments (namely 4 050 m 3·hm -2 (W1) and 3 720 m 3·hm -2 (W2)) as the main plot, three nitrogen application amount treatments (namely 0 (N0), 300 kg·hm -2(N1) and 450 kg·hm -2 (N2)) as the split plot, and three plant densities (namely 7.5×10 4 plant/hm 2(D1), 9.75×10 4 plant/hm 2(D2) and 1.2×10 5 plant/hm 2(D3)) as the split-split plot. 【Result】 Nitrogen fertilizer application and planting density had significant influence on photosynthetic rate, maximum dry matter accumulation rate, emergence days of maximum dry matter accumulation rate, dry matter accumulation amount, grain yield, water use efficiency and nitrogen fertilizer use rate in growth stages of maize. The coupling of irrigation and nitrogen fertilizer management increased photosynthesis, the highest dry matter accumulation rate and advanced the days of emergence of the highest dry matter accumulation rate, and enhanced dry matter accumulation amount and grain yield in growth stages of maize. Under the reduced 20% irrigation and the level of higher nitrogen application in growth stages of maize, compared with the low planting density and high planting density treatments, the photosynthetic rate under the medium planting density treatment was increased by 17.31% and 11.43%, respectively. While, compared with the low planting density treatment, the maximum dry matter accumulation rate and days of emergence of the highest dry matter accumulation rate under the treatment with the high planting density and medium planting density was increased by 21.07% and 7.52%, respectively, and advanced by 6.7, 4.1 days, respectively, meanwhile, the dry matter accumulation of the high planting density treatment was increased by 4.27% and 10.59%, respectively; Compared with the low planting density treatment and the high planting density treatment, the grain yield, water use efficiency and nitrogen fertilizer use rate of maize with the medium planting density treatment was increased by 24.2%, 11.4%, 29.9% and 29.2%, 18.4%, 13.8%, respectively. Under the reduced 20% irrigation and same planting density treatment in growth stages of maize, compared with medium nitrogen application treatment and no nitrogen application treatment, the photosynthetic rate, the dry matter accumulation and grain yield of maize under the treatment with high nitrogen application treatment was increased by 7.34%, 11.63%, 14.63% and 49.54%, 44.53%, 69.03%, under the medium planting density treatment, respectively; Compared with medium nitrogen application treatment and no nitrogen application treatment, the maximum dry matter accumulation rate and days of emergence of the highest dry matter accumulation rate of maize with the high nitrogen application treatment was increased by 19.07% and 54.35% and advanced by 3.9 and 6.8 days under the high planting density treatment, respectively. Compared with no nitrogen application treatment, nitrogen fertilizer use rate of maize with the high nitrogen application treatment was increased by 24.50%. The facts showed that the coupling of reduced 20% irrigation and high nitrogen application had regulated dry matter accumulation, grain yield with the improvement of photosynthesis, dry matter accumulation rate, water use efficiency, nitrogen fertilizer use rate and extending the duration of dry matter accumulation. 【Conclusion】 The treatment with application coupling of irrigation and nitrogen (i.e. reduced 20% irrigation amount during growth 3 720 m 3·hm -2(W2) and N application with 450 kg·hm -2 at growth stage and medium density of 9.75×10 4 plant/hm 2 at growth stage of maize) could be considered as the best feasible cultivation pattern management, which could provide technical guidance for further exploring high yield and efficient cultivation of close planting maize in Oasis irrigation region.
Keywords:coupling of irrigation and nitrogen application  planting density  oasis irrigation region  photosynthesis  dry matter accumulation characteristics  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国农业科学》浏览原始摘要信息
点击此处可从《中国农业科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号