首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Factors affecting triadimefon degradation in soils
Authors:Singh Neera
Institution:Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi 110 012, India.
Abstract:The degradation of triadimefon 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one] was studied in two soils, mollisol and inseptisol, under varying conditions of moisture and temperature, and the role of cow manure amendment and soil sterilization on fungicide degradation was ascertained. The soil moisture content affected the pathway followed for triadimefon degradation. In nonflooded soils (60% water-holding capacity), triadimefon was reduced to triadimenol, and in flooded soils, it was metabolized to the diol derivative 1-(1H-1,2,4-triazol-1-yl)-3,3-dimethylbutan-2-one-1,4-diol]. In nonflooded soils, triadimefon was more persistent in soil having more organic carbon content (mollisol), and the amendment of cow manure (5%) further enhanced its persistence. On the contrary, in flooded soil systems, the higher the soil organic carbon content was, the less persistent was the fungicide, and amendment of cow manure further enhanced its degradation. Triadimefon degradation was faster at 35 degrees C than at 27 degrees C. Triadimefon degradation in soils was mediated by the microorganisms, and no triadimefon degradation was observed in sterile soils. Triadimefon (1 mg/kg) did not affect soil phosphatase activity in either of the soils; however, soil dehydrogenase activity was significantly reduced, especially in mollisol soil.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号