首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Soil microbial response, water and nitrogen use by tomato under different irrigation regimes
Authors:Xiaoliang Li  Fulai Liu  Qimei Lin
Institution:a Department of Soil and Water Science, College of Resource and Environment, China Agricultural University, No. 2 of West Road of Yuanmingyuan, 100193 Beijing, China
b Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Højbakkagaard Allé 13, DK-2630 Taastrup, Denmark
c Department of Environment Engineering, Environment Management College of China, China
Abstract:The objectives of this study were to investigate the effects of full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD) on plant biomass, irrigation water productivity (IWP), nitrogen use efficiency (NUE) of tomato, and soil microbial C/N ratio. The plants were grown in pots with roots split equally between two soil compartments in a climate-controlled glasshouse. During early fruiting stage, plants were exposed to FI, DI, and PRD treatments. In FI, both soil compartments were irrigated daily to a volumetric soil water content of 18%; in PRD, only one soil compartment was irrigated to 18% while the other was allowed to dry to ca. 7-8%, then the irrigation was shifted; in DI, the same amount of water used for the PRD plants was equally split to the two soil compartments. The results showed that, the FI treatment produced significantly higher dry biomasses of leaves, stems, and fresh weight of fruit and water productivity of aboveground dry biomass production than either DI or PRD, however, fruit IWP in DI was 25% higher than that of FI, and harvest index in DI and PRD were 50% and 22% higher than FI, respectively, for the 26% and 23% less water used in the DI and PRD, respectively, than the FI treatment. The DI treatment caused the smallest losses of N and highest N use efficiency by fruit. Both DI and PRD caused a significant increase in the soil microbial C/N ratio, meaning ratio of fungal biomass was high at low soil water contents. The result indicates that more work is needed to link the aboveground N uptake and the underground microbially mediated N transformation under different water-saving irrigation regimes.
Keywords:Water-saving irrigation  Nitrogen use efficiency  Water productivity  Soil microbial C/N ratio
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号