首页 | 本学科首页   官方微博 | 高级检索  
     检索      

大麦抗条纹病与SSR标记的关联分析
引用本文:司二静,孟亚雄,李葆春,马小乐,张宇,王化俊.大麦抗条纹病与SSR标记的关联分析[J].植物保护学报,2019,46(5):1073-1085.
作者姓名:司二静  孟亚雄  李葆春  马小乐  张宇  王化俊
作者单位:甘肃农业大学, 甘肃省干旱生境作物学重点实验室, 甘肃省作物遗传改良与种质创新重点实验室, 兰州 730070;甘肃农业大学农学院, 兰州 730070,甘肃农业大学, 甘肃省干旱生境作物学重点实验室, 甘肃省作物遗传改良与种质创新重点实验室, 兰州 730070;甘肃农业大学农学院, 兰州 730070,甘肃农业大学, 甘肃省干旱生境作物学重点实验室, 甘肃省作物遗传改良与种质创新重点实验室, 兰州 730070;甘肃农业大学生命科学技术学院, 兰州 730070,甘肃农业大学, 甘肃省干旱生境作物学重点实验室, 甘肃省作物遗传改良与种质创新重点实验室, 兰州 730070;甘肃农业大学农学院, 兰州 730070,甘肃省种子管理局, 兰州 730020,甘肃农业大学, 甘肃省干旱生境作物学重点实验室, 甘肃省作物遗传改良与种质创新重点实验室, 兰州 730070;甘肃农业大学农学院, 兰州 730070
基金项目:甘肃农业大学科技创新基金-盛彤笙创新基金(GSAU-STS-1735),甘肃农业大学科技创新基金-公招博士科研启动基金(GSAURCZX201706),国家自然科学基金(30771331)
摘    要:为了解不同来源大麦的遗传多样性,并筛选与抗条纹病性状相关联的SSR标记,采用三明治法通过人工接种大麦条纹病菌Pyrenophora graminea对180份大麦材料进行抗性鉴定,通过119对多态性SSR引物对180份大麦材料进行SSR标记分析,并用一般线性模型(general lineal model,GLM)和混合线性模型(mixed lineal model,MLM)进行大麦抗条纹病与SSR标记的关联分析。结果表明,人工接种大麦条纹病菌后共鉴定出10份免疫、9份高抗、25份抗病、70份感病和66份高感大麦材料;119对多态性SSR引物从180份大麦材料中共检测出559个等位变异位点,平均为4.70个,变幅为2~14个,基因多样性和多态性信息含量变幅分别为0.05~0.88和0.05~0.86;群体结构分析表明供试大麦材料可分为2个亚群。基于GLM和MLM分别检测到14个和10个与大麦条纹病抗性相关联的SSR标记,对表型变异的解释率变幅分别为4.46%~9.76%和3.25%~7.87%,其中Scssr08238和BMS64标记均与大麦条纹病抗性呈极显著相关,二者在GLM中解释率分别为9.76%和8.00%,在MLM中解释率分别为7.87%和5.61%。本研究所鉴定的大麦抗性种质可作为抗源用于抗病育种,与抗性相关联的SSR标记可用于大麦抗条纹病的分子标记辅助选择育种。

关 键 词:大麦条纹病  抗性鉴定  遗传多样性  群体结构  关联分析
收稿时间:2018/10/24 0:00:00

Association analysis between barley resistance to Pyrenophora graminea and SSR markers
Si Erjing,Meng Yaxiong,Li Baochun,Ma Xiaole,Zhang Yu and Wang Huajun.Association analysis between barley resistance to Pyrenophora graminea and SSR markers[J].Acta Phytophylacica Sinica,2019,46(5):1073-1085.
Authors:Si Erjing  Meng Yaxiong  Li Baochun  Ma Xiaole  Zhang Yu and Wang Huajun
Institution:Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Important & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China;College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China,Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Important & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China;College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China,Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Important & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China;College of Life Science and Technology, Lanzhou 730070, Gansu Province, China,Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Important & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China;College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China,Gansu Plant Seed Administrative Station, Lanzhou 730020, Gansu Province, China and Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Important & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China;College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China
Abstract:To understand the genetic diversity of barley materials and identify SSR markers associated with barley resistance to Pyrenophora graminea, the resistance identification was tested by using the method of Sandwich, SSR genotyping was analyzed with 119 pairs of polymorphic SSR markers, association analysis was performed with resistance identification and SSR genotyping via general lineal model (GLM) and mixed lineal (MLM) models. The results showed that there were ten immunes, nine high resistant, 25 resistant, 70 susceptible and 66 high susceptible materials were detected from a total of 559 alleles and the average alleles per locus was 4.70, which ranged from 2 to 14, gene diversity varied from 0.05 to 0.88, the polymorphism information content (PIC) value ranged from 0.05 to 0.86. Barley materials were divided into two subgroups by population structure analysis; 14 SSR markers and ten SSR markers were found to be associated with resistance to barley leaf stripe based on GLM and MLM, respectively, with the rate of phenotypic variation explained ranged from 4.46% to 9.76% and from 3.25% to 7.87%. Scssr08238 and BMS64 were significantly associated with resistance to barley leaf stripe between GLM and MLM, the two markers''rate of phenotypic variation explained were 9.76% and 8.00% in GLM, and 7.87% and 5.61% in MLM, respectively. Resistance germplasm identified in this study might be as resistant resource for barley resistance breeding, and SSR markers associated with barley leaf stripe resistance could be used for marker-assisted selection breeding of barley resistance to P. graminea.
Keywords:barley leaf stripe  resistance identification  genetic diversity  population structure  association analysis
本文献已被 CNKI 等数据库收录!
点击此处可从《植物保护学报》浏览原始摘要信息
点击此处可从《植物保护学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号