首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biophysical dynamics of western transition zones: a preliminary synthesis
Authors:Donald B Olson
Institution:Division of Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, University of Miami 4600 Rickenbacker Causeway, Miami, Florida 33149, USA
Abstract:The nature of the western portions of the biogeographic temperate or transition zones in the North Pacific and North Atlantic is reviewed. The physical transport of nutrients and biomass into them from the Kuroshio and Gulf Stream as well as from the poleward sides are estimated. The conclusion is that the upwelling in the two western boundary currents makes the largest contribution to the nutrient and biomass fluxes into these transition zones. A conservative estimate of the amount of upwelled fluid is derived from absolute velocity sections in the Gulf Stream. The estimate suggests that upwelling into the euphotic zone exceeds 2 × 106 m3 s–1. This implies that upwelling in these western boundary currents matches or exceeds that in eastern boundary currents such as the California Current. The two western boundary regimes have very different poleward situations. The Oyashio extension flows parallel to the Kuroshio and is a deep current. The North Atlantic Shelf Front flow is to the west where it is ultimately entrained into the edge of the Gulf Stream. There does not seem to be any tendency for this to occur in the Kuroshio. Despite these differences in the northern and western boundaries, the two transition zones are similar with large amplitude meanders, anticyclonic rings and streamers dominating their physical structure. The physical features responsible for the transfer of materials from the boundary current extensions into the transition zones are similar in both systems. Ring formation contributes only ? 10% of the transfer, while ring‐induced streamers contribute 30%. The rest of the transport is contributed by branching of the boundary current front. Both currents have well developed secondary fronts consisting of subtropical surface water pulled into the transition zone. Biologically, the upwelling in both western boundary currents leads to a biomass maximum along the boundary in both secondary producers (copepods) and in small pelagic fish. In the Kuroshio, the latter are the Japanese sardine, Sardinops melanostictus, that spawn in the Kuroshio and then enter the transition zone for the summer and fall months. In the Gulf Stream, the dominate species are menhaden, Brevoortia tyrannus and B. smithi. These species make use of the coastal environments of North America and although the adults spawn in the Gulf Stream, they are not thought to play a major role in the Slope Water, transition zone. The similar differences in the use of the Kuroshio and the Gulf Stream ecosystems occurs in the behaviour of bluefin tuna, squid and other large pelagics. The Gulf Stream system also lacks an equivalent to Pacific saury, Cololabis saira. The biology therefore is at least subtly different, with saury and sardines being replaced by mid‐water fish in the North Atlantic. A fuller comparison of the biology with quantitative methods in both systems should be encouraged.
Keywords:fronts  Gulf Stream  Kuroshio  upwelling  western boundary currents
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号