首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ammonium assimilation in rice based on the occurrence of 15N and inhibition of glutamine synthetase activity
Authors:J R Magalhães  DM Huber  TC Lee  CY Tsai
Institution:1. EMBRAPA/CENARGEN‐S.A.I.N. , CP 102372, Brasilia, DF, 70.770, Brazil;2. Department of Botany and Plant Pathology , Purdue University , West Lafayette, IN, 47907
Abstract:Assimilation of ammonium (NH4) into free amino acids and total reduced nitrogen (N) was monitored in both roots and shoots of two‐week old rice seedlings supplied with 5 mM 99% (15NH4)2SO4 in aerated hydroponic culture with or without a 2 h preincubation with 1 mM methionine sulfoximine (MSX), an inhibitor of glutamine synthetase (GS) activity. 15NH4 was not assimilated into amino acids when the GS/GOGAT (glutamate synthase) cycle was inhibited by MSX. Inhibition of glutamine synthetase (GS) activity in roots with MSX increased both the amount of NH4 and the abundance of 15N labeled NH4. In contrast, the amount of Gln and Glu, and their proportions as 15N, decreased in roots when GS activity was inhibited. This research confirms the importance of GS/GOGAT in NH4 assimilation in rice roots.

15N‐labeled studies indicate that NH4 ions incorporated by roots of rice are transformed primarily into glutamine (Gln) and glutamic acid (Glu) before being converted to other amino acids through transamination (15). The formation of amino acids such as aspartic acid (Asp) and alanine (Ala) directly from free NH4 in roots also has been reported (4,15). Translocation of free NH4 to plant shoots, based on the concentration of free NH4 in xylem exudate, has been reported in tomato (13), although NH4 in shoots primarily originates from nitrate reduction in the shoot. Photorespiration also can contribute to the accumulation of NH4 in leaves (7).

The GS/GOGAT cycle appears to be primarily responsible for the assimilation of exogenously supplied NH4 and NH4 derived from nitrate reduction in leaves, as well as NH4 derived from photorespiration (2,3,6,8). Genetic evidence cited to support this conclusion includes the lethal effect of photorespiratory conditions on plant mutants deficient in chloroplast‐localized GS and GOGAT activities (2,3,9), and the rapid accumulation of free NH4 in GS‐deficient mutants under photorespiratory conditions (2,3,5).

The present study was initiated to quantify the in vivo amino acid synthesis in rice roots and shoots by analysis of 15N labeling, and should provide a more complete understanding of this important system for NH4 utilization.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号