首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of the nutrient resorption stoichiometry of <Emphasis Type="Italic">Quercus variabilis</Emphasis> Blume growing in two sites contrasting in soil phosphorus content
Authors:Huawei Ji  Jiahao Wen  Baoming Du  Ningxiao Sun  Björn Berg  Chunjiang Liu
Institution:1.School of Agriculture and Biology and Research Centre for Low-Carbon Agriculture,Shanghai Jiao Tong University,Shanghai,China;2.Shanghai Urban Forest Research Station,State Forestry Administration,Beijing,China;3.Key Laboratory of Urban Agriculture (South),Ministry of Agriculture,Beijing,China;4.Department of Forest Ecology,University of Helsinki,Helsinki,Finland;5.Section of Biology,University of G?vle,G?vle,Sweden
Abstract:

Key message

Foliar phosphorus (P) resorption in Quercus variabilis Blume was significantly lower at a P-rich than at a P-deficient site. Moreover, P resorption strongly decreased, and nitrogen:phosphorus and carbon:phosphorus resorption ratios increased with soil P content. This demonstrates a strong link between foliar P resorption and P content in soils, and emphasizes the importance of P resorption in leaves of trees growing in soils with contrasted P content.

Context

Subtropical ecosystems are generally characterized by P-deficient soils. However, P-rich soils develop in phosphate rock areas.

Aims

We compared the patterns of nutrient resorption, in terms of ecological stoichiometry, for two sites naturally varying in soil P content.

Methods

The resorption efficiency (percentage of a nutrient recovered from senescing leaves) and proficiency (level to which nutrient concentration is reduced in senesced leaves) of 12 elements were determined in two oak (Q. variabilis) populations growing at a P-rich or a P-deficient site in subtropical China.

Results

P resorption efficiency dominated the intraspecific variation in nutrient resorption between the two sites. Q. variabilis exhibited a low P resorption at the P-rich site and a high P resorption at the P-deficient site. Both P resorption efficiency and proficiency strongly decreased with soil P content only and were positively related to the N:P and C:P ratios in green and senesced leaves. Moreover, resorption efficiency ratios of both N:P and C:P were positively associated with soil P.

Conclusion

These results revealed a strong link between P resorption and P stoichiometry in response to a P deficiency in the soil, and a single- and limiting-element control pattern of P resorption. Hence, these results provide new insights into the role of P resorption in plant adaptations to geologic variations of P in the subtropics.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号